
CHAPTER CHAPTER FOURTEENFOURTEEN

Integrator 22

LayeredBxDF 895

14 LIGHT TRANSPORT II:
VOLUME RENDERING

The abstractions for representing participating media that were introduced in Chapter 11
describe how media scatter light but they do not provide the capability of simulating the
global effects of light transport in a scene. The situation is similar to that with BSDFs: they
describe local effects, but it was necessary to start to introduce integrators in Chapter 13 that
accounted for direct lighting and interreflection in order to render images. This chapter does
the same for volumetric scattering.

We begin with the introduction of the equation of transfer, which generalizes the light trans-
port equation to describe the equilibrium distribution of radiance in scenes with participat-
ing media. Like the transmittance equations in Section 11.2, the equation of transfer has a
null-scattering generalization that allows sampling of heterogeneous media for unbiased in-
tegration. We will also introduce a path integral formulation of it that generalizes the surface
path integral from Section 13.1.4.

Following sections discuss implementations of solutions to the equation of transfer. Sec-
tion 14.2 introduces two Integrators that use Monte Carlo integration to solve the full
equation of transfer, making it possible to render scenes with complex volumetric effects.
Section 14.3 then describes the implementation of LayeredBxDF, which solves a 1D special-
ization of the equation of transfer to model scattering from layered materials at surfaces.

14.1 THE EQUATION OF TRANSFER

The equation of transfer is the fundamental equation that governs the behavior of light
in a medium that absorbs, emits, and scatters radiation. It accounts for all the volume
scattering processes described in Chapter 11—absorption, emission, in scattering, and out
scattering—to give an equation that describes the equilibrium distribution of radiance. The
light transport equation is in fact a special case of it, simplified by the lack of participating
media and specialized for scattering from surfaces. (We will equivalently refer to the equation
of transfer as the volumetric light transport equation.)

854 L I G H T T R A N S P O R T I I : V O L U M E R E N D E R I N G CHAPTER 14

Li(p, ω)

Tr(p′→p)

Ls(p′, –ω)

Figure 14.1: The equation of transfer gives the incident radiance at point Li(p, ω) accounting for the effect
of participating media. At each point p′ along the ray, the source function Ls(p′, −ω) gives the differential
radiance added at the point due to scattering and emission. This radiance is then attenuated by the beam
transmittance Tr(p′ → p) from the point p′ to the ray’s origin.

In its most basic form, the equation of transfer is an integro-differential equation that de-
scribes how the radiance along a beam changes at a point in space. It can be derived by
subtracting the effects of the scattering processes that reduce energy along a beam (absorp-
tion and out scattering) from the processes that increase energy along it (emission and in
scattering).

To start, recall the source function Ls from Section 11.1.4: it gives the change in radiance at
a point p in a direction ω due to emission and in-scattered light from other points in the
medium:

Ls(p, ω) = σa(p, ω)

σt(p, ω)
Le(p, ω) + σs(p, ω)

σt(p, ω)

∫

S2
p(p, ωi, ω) Li(p, ωi) dωi.

The source function accounts for all the processes that add radiance to a ray.

The attenuation coefficient, σt(p, ω), accounts for all processes that reduce radiance at a
point: absorption and out scattering. The differential equation that describes its effect, Equa-
tion (11.4), is

dLo(p, ω) = −σt(p, ω) Li(p, −ω) dt.

The overall differential change in radiance at a point p′ = p + tω along a ray is found by
adding these two effects together to get the integro-differential form of the equation of
transfer:1

∂

∂t
Lo(p′, ω) = −σt(p′, ω)Li(p′, −ω) + σt(p′, ω) Ls(p′, ω). (14.1)

(The σt modulation of the source function accounts for the medium’s density at the point.)

With suitable boundary conditions, this equation can be transformed to a pure integral
equation that describes the effect of participating media from the infinite number of points
along a ray. For example, if we assume that there are no surfaces in the scene so that the rays
are never blocked and have an infinite length, the integral equation of transfer is

Li(p, ω) =
∫ ∞

0
Tr(p′ → p) σt(p′, ω) Ls(p′, −ω) dt.

(See Figure 14.1.) The meaning of this equation is reasonably intuitive: it just says that
the radiance arriving at a point from a given direction is determined by accumulating the
radiance added at all points along the ray. The amount of added radiance at each point along
the ray that reaches the ray’s origin is reduced by the beam transmittance to the point.

1 It is an integro-differential equation due to the integral over the sphere in the source function.

SECTION 14.1 T H E E Q U A T I O N O F T R A N S F E R 855

Li(p, ω) Ls(p′, –ω) Lo(ps, –ω)
ps

Figure 14.2: For a finite ray that intersects a surface, the incident radiance, Li(p, ω), is equal to the outgoing
radiance from the surface, Lo(ps, −ω), times the beam transmittance to the surface plus the added radiance
from all points along the ray from p to ps.

More generally, if there are reflecting or emitting surfaces in the scene, rays do not necessarily
have infinite length and the first surface that a ray hits affects its radiance, adding outgoing
radiance from the surface at the point and preventing radiance from points along the ray
beyond the intersection point from contributing to radiance at the ray’s origin. If a ray (p, ω)
intersects a surface at some point ps at a parametric distance t along the ray, then the integral
equation of transfer is

Li(p, ω) = Tr(ps → p)Lo(ps, −ω) +
∫ t

0
Tr(p′ → p) σt(p′, ω) Ls(p′, −ω) dt ′, (14.2)

where p′ = p + t ′ω are points along the ray (Figure 14.2).

This equation describes the two effects that contribute to radiance along the ray. First, re-
flected radiance back along the ray from the surface is given by the Lo term, which gives the
emitted and reflected radiance from the surface. This radiance may be attenuated by the par-
ticipating media; the beam transmittance from the ray origin to the point ps accounts for
this. The second term accounts for the added radiance along the ray due to volumetric scat-
tering and emission up to the point where the ray intersects the surface; points beyond that
one do not affect the radiance along the ray.

14.1.1 NULL-SCATTERING EXTENSION

In Section 11.2.1 we saw the value of null scattering, which made it possible to sample from
a modified transmittance equation and to compute unbiased estimates of the transmittance
between two points using algorithms like delta tracking and ratio tracking. Null scattering
can be applied in a similar way to the equation of transfer, giving similar benefits.

In order to simplify notation in the following, we will assume that the various scattering
coefficients σ do not vary as a function of direction. As before, we will also assume that the
null-scattering coefficient σn is nonnegative and has been set to homogenize the medium’s
density to a fixed majorant σmaj = σn + σt. Neither of these simplifications affect the course
of the following derivations; both generalizations could be easily reintroduced.

A null-scattering generalization of the equation of transfer can be found using the rela-
tionship σt = σmaj − σn from Equation (11.11). If that substitution is made in the integro-
differential equation of transfer, Equation (14.1), and the boundary condition of a surface at
distance t along the ray is applied, then the result can be transformed into the pure integral
equation

Li(p, ω) = Tmaj(ps → p)Lo(ps, −ω)

+ σmaj

∫ t

0
Tmaj(p′ → p) Ln(p′, −ω) dt ′,

(14.3)

856 L I G H T T R A N S P O R T I I : V O L U M E R E N D E R I N G CHAPTER 14

where p′ = p + t ′ω, as before, and we have introduced Tmaj to denote the majorant transmit-
tance that accounts for both regular attenuation and null scattering. Using the same conven-
tion as before that d = ‖p − p′‖ is the distance between points p and p′, it is

Tmaj(p′ → p) = e
∫ d

0
−(σt(p+tω)+σn(p+tω)) dt = e−σmajd. (14.4)

The null-scattering source function Ln is the source function Ls from Equation (11.3) plus
a new third term:

Ln(p, ω) = σa(p)

σmaj
Le(p, ω) + σs(p)

σmaj

∫

S2
p(p, ωi, ω) Li(p, ωi) dωi

+ σn(p)

σmaj
Li(p, ω).

(14.5)

Because it includes attenuation due to null scattering, Tmaj is always less than or equal to the
actual transmittance. Thus, the product TmajLo in Equation (14.3) may be less than the actual
contribution of radiance leaving the surface, TrLo. However, any such deficiency is made up
for by the last term of Equation (14.5).

14.1.2 EVALUATING THE EQUATION OF TRANSFER

The Tmaj factor in the null-scattering equation of transfer gives a convenient distribution
for sampling distances t along the ray in the medium that leads to the volumetric path-
tracing algorithm, which we will now describe. (The algorithm we will arrive at is sometimes
described as using delta tracking to solve the equation of transfer, since that is the sampling
technique it uses for finding the locations of absorption and scattering events.)

If we assume for now that there is no geometry in the scene, then the null-scattering equation
of transfer, Equation (14.3), simplifies to

Li(p, ω) = σmaj

∫ ∞

0
Tmaj(p′ → p) Ln(p′, −ω) dt ′.

Thanks to null scattering having made the majorant medium homogeneous, σmajTmaj can be
sampled exactly. The first step in the path-tracing algorithm is to sample a point p′ from its
distribution, giving the estimator

Li(p, ω) ≈
σmajTmaj(p′ → p) Ln(p′, −ω)

p(p′)
.

From Section A.4.2, we know that the probability density function (PDF) for sampling
a distance t from the exponential distribution e−σmajt is p(t) = σmaje

−σmajt , and so the
estimator simplifies to

Li(p, ω) ≈ Ln(p′, −ω). (14.6)

What is left is to evaluate Ln.

Because σmaj = σa + σs + σn, the initial σ factors in each term of Equation (14.5) can be
considered to be three probabilities that sum to 1. If one of the three terms is randomly
selected according to its probability and the rest of the term is evaluated without that factor,
the expected value of the result is equal to Ln. Considering how to evaluate each of the terms:

. If the σa term is chosen, then the emission at Le(p′, ω) is returned and sampling termi-
nates.

. For the σs term, the integral over the sphere of directions must be estimated. A direction
ω′ is sampled from some distribution and recursive evaluation of Li(p′, ω′) then pro-

Medium 714

SECTION 14.1 T H E E Q U A T I O N O F T R A N S F E R 857

ceeds, weighted by the ratio of the phase function and the probability of sampling the
direction ω′.

. If the null-scattering term is selected, Li(p′, ω) is to be evaluated, which can be handled
recursively as well.

For the full equation of transfer that includes scattering from surfaces, both the surface-
scattering term and the integral over the ray’s extent lead to recursive evaluation of the
equation of transfer. In the context of path tracing, however, we would like to only evaluate
one of the terms in order to avoid an exponential increase in work. We will therefore start
by defining a probability q of estimating the surface-scattering term; volumetric scattering is
evaluated otherwise. Given such a q, the Monte Carlo estimator

Li(p, ω) ≈






Tmaj(ps→p)Lo(ps,−ω)

q , with probability q

σmaj

∫ t

0
Tmaj(p′→p) Ln(p′,−ω) dt ′

1−q , otherwise

gives Li(p, ω) in expectation.

A good choice for q is that it be equal to Tmaj(ps → p). Surface scattering is then evaluated
with a probability proportional to the transmittance to the surface and the ratio Tmaj/q is
equal to 1, leaving just the Lo factor. Furthermore, a sampling trick can be used to choose
between the two terms: if a sample t ′ ∈ [0, ∞) is taken from σmajTmaj’s distribution, then
the probability that t ′ > t is equal to Tmaj(ps → p). (This can be shown by integrating Tmaj’s
PDF to find its cumulative distribution function (CDF) and then considering the value of its
CDF at t .) Using this technique and then making the same simplifications that brought us to
Equation (14.6), we arrive at the estimator

Li(p, ω) ≈
{

Lo(ps, ω), if t ′ > t

Ln(p′, −ω), otherwise.
(14.7)

From this point, outgoing radiance from a surface can be estimated using techniques that
were introduced in Chapter 13, and Ln can be estimated as described earlier.

14.1.3 SAMPLING THE MAJORANT TRANSMITTANCE

We have so far presented volumetric path tracing with the assumption that σmaj is constant
along the ray and thus that Tmaj is a single exponential function. However, those assump-
tions are not compatible with the segments of piecewise-constant majorants that Medium
implementations provide with their RayMajorantIterators. We will now resolve this incom-
patibility.

Figure 14.3 shows example majorants along a ray, the optical thickness that they integrate to,
and the resulting majorant transmittance function. The transmittance function is continuous
and strictly decreasing, though at a rate that depends on the majorant at each point along the
ray. If integration starts from t = 0, and we denote the ith segment’s majorant as σ i

maj and its
endpoint as pi , the transmittance can be written as

Tmaj(p → p′) = T 1
maj(p → p1) T 2

maj(p1 → p2) . . . T n
maj(pn−1 → p′)

where T i
maj is the transmittance function for the ith segment and the point p′ is the endpoint

of the nth segment. (This relationship uses the multiplicative property of transmittance from
Equation (11.6).)

Given the general task of estimating an integral of the form
∫ t

0
σmaj(p′) Tmaj(p → p′) f (p′) dt ′

858 L I G H T T R A N S P O R T I I : V O L U M E R E N D E R I N G CHAPTER 14

σmaj
τ

t t

4

3

2

1

1.0

0.8

0.6

0.4

0.2
0.2 0.4 0.6

(a) (b)

0.8 1.0 0.2 0.4 0.6 0.8 1.0

Figure 14.3: (a) Given piecewise-constant majorants defined over segments along a ray, the corresponding
optical thickness τ is a piecewise-linear function. (b) Exponentiating the negative optical thickness gives
the transmittance at each point along the ray. The transmittance function is continuous and decreasing, but
has a first derivative discontinuity at transitions between segments.

with p′ = p + t ′ω and ω = ̂p′ − p, it is useful to rewrite the integral to be over the individual
majorant segments, which gives

σ 1
maj

∫ t1

0
T 1

maj(p → p′) f (p′) dt ′

+ σ 1
majT

1
maj(p → p1) σ 2

maj

∫ t2

t1

T 2
maj(p1 → p′) f (p′) dt ′

+ σ 1
majT

1
maj(p → p1) σ 2

majT
2

maj(p1 → p2)

∫ t3

t2

T 3
maj(p2 → p′) f (p′) dt ′ +

(14.8)

Note that each term’s contribution is modulated by the transmittances and majorants from
the previous segments.

The form of Equation (14.8) hints at a sampling strategy: we start by sampling a value t ′1
from T 1

maj’s distribution p1; if t ′1 is less than t1, then we evaluate the estimator at the sampled

point p′:

σ 1
majT

1
maj(p → p′) f (p′)

p1(t
′
1)

= f (p′).

Applying the same ideas that led to Equation (14.7), we otherwise continue and consider the
second term, drawing a sample t ′2 from T 2

maj’s distribution, starting at t1. If the sampled point

is before the segment’s endpoint, t ′2 < t2, then we have the estimator

σ 1
majT

1
maj(p → p1) σ 2

majT
2

maj(p1 → p′) f (p′)

Pr{t ′1 > t1} p2(t
′
2)

.

Because the probability that t ′1 > t is equal to σ 1
majT

1
maj(p → p1), the estimator for the second

term again simplifies to f (p′). Otherwise, following this sampling strategy for subsequent
segments similarly leads to the same simplified estimator in the end. It can furthermore be
shown that the probability that no sample is generated in any of the segments is equal to
the full majorant transmittance from 0 to t , which is exactly the probability required for the
surface/volume estimator of Equation (14.7).

Float 23

Medium 714

MediumProperties 718

Ray 95

RayMajorantSegment 718

RNG 1054

SampledSpectrum 171

SampledWavelengths 173

Sampler 469

SECTION 14.1 T H E E Q U A T I O N O F T R A N S F E R 859

The SampleT_maj() function implements this sampling strategy, handling the details of iter-
ating over RayMajorantSegments and sampling them. Its functionality will be used repeatedly
in the following volumetric integrators.

〈Medium Sampling Functions〉 ≡
template <typename F>
SampledSpectrum SampleT_maj(Ray ray, Float tMax, Float u,

RNG &rng, const SampledWavelengths &lambda, F callback);

In addition to a ray and an endpoint along it specified by tMax, SampleT_maj() takes a single
uniform sample and an RNG to use for generating any necessary additional samples. This
allows it to use a well-distributed value from a Sampler for the first sampling decision along
the ray while it avoids consuming a variable and unbounded number of sample dimensions if
more are needed (recall the discussion of the importance of consistency in sample dimension
consumption in Section 8.3).

The provided SampledWavelengths play their usual role, though the first of them has addi-
tional meaning: for media with scattering properties that vary with wavelength, the majorant
at the first wavelength is used for sampling. The alternative would be to sample each wave-
length independently, though that would cause an explosion in samples to be evaluated in
the context of algorithms like path tracing. Sampling a single wavelength can work well for
evaluating all wavelengths’ contributions if multiple importance sampling (MIS) is used; this
topic is discussed further in Section 14.2.2.

A callback function is the last parameter passed to SampleT_maj(). This is a significant differ-
ence from pbrt’s other sampling methods, which all generate a single sample (or sometimes,
no sample) each time they are called. When sampling media that has null scattering, however,
often a succession of samples are needed along the same ray. (Delta tracking, described in Sec-
tion 11.2.1, is an example of such an algorithm.) The provided callback function is therefore
invoked by SampleT_maj() each time a sample is taken. After the callback processes the sam-
ple, it should return a Boolean value that indicates whether sampling should recommence
starting from the provided sample. With this implementation approach, SampleT_maj() can
maintain state like the RayMajorantIterator between samples along a ray, which improves
efficiency.

The signature of the callback function should be the following:

bool callback(Point3f p, MediumProperties mp, SampledSpectrum sigma_maj,
SampledSpectrum T_maj)

Each invocation of the callback is passed a sampled point along the ray, the associated
MediumProperties and σmaj for the medium at that point, and the majorant transmittance
Tmaj. The first time callback is invoked, the majorant transmittance will be from the ray
origin to the sample; any subsequent invocations give the transmittance from the previous
sample to the current one.

After sampling concludes, SampleT_maj() returns the majorant transmittance Tmaj from the
last sampled point in the medium (or the ray origin, if no samples were generated) to the
ray’s endpoint (see Figure 14.4).

As if all of this was not sufficiently complex, the implementation of SampleT_maj() starts out
with some tricky C++ code. There is a second variant of SampleT_maj() we will introduce
shortly that is templated based on the concrete type of Medium being sampled. In order to call
the appropriate template specialization, we must determine which type of Medium the ray is

Float 23

Medium 714

Ray 95

Ray::medium 95

RNG 1054

SampledSpectrum 171

SampledWavelengths 173

SampleT_maj() 859

TaggedPointer 1073

TaggedPointer::Dispatch()
1075

TaggedPointer::Is() 1074

860 L I G H T T R A N S P O R T I I : V O L U M E R E N D E R I N G CHAPTER 14

tmaxTrTrTrTrTr

Figure 14.4: In addition to calling a provided callback function at sampled points in the medium, shown
here as filled circles, the SampleT_maj() function returns the majorant transmittance Tmaj from the last
sampled point to the provided tmax value.

passing through. Conceptually, we would like to do something like the following, using the
TaggedPointer::Is() method:

if (ray.medium.Is<HomogeneousMedium>())
SampleT_maj<HomogeneousMedium>(ray, tMax, u,rng, lambda, func);

else if (ray.medium.Is<UniformGridMedium>())
.
.
.

However, enumerating all the media that are implemented in pbrt in the SampleT_maj() func-
tion is undesirable: that would add an unexpected and puzzling additional step for users who
wanted to extend the system with a new Medium. Therefore, the first SampleT_maj() func-
tion uses the dynamic dispatch capability of the Medium’s TaggedPointer along with a generic
lambda function, sample, to determine the Medium’s type. TaggedPointer::Dispatch() ends
up passing the Medium pointer back to sample; because the parameter is declared as auto, it
then takes on the actual type of the medium when it is invoked. Thus, the following function
has equivalent functionality to the code above but naturally handles all the media that are
listed in the Medium class declaration without further modification.

〈Medium Sampling Function Definitions〉 +≡
template <typename F>
SampledSpectrum SampleT_maj(Ray ray, Float tMax, Float u, RNG &rng,

const SampledWavelengths &lambda, F callback) {
auto sample = [&](auto medium) {

using M = typename std::remove_reference_t<decltype(*medium)>;
return SampleT_maj<M>(ray, tMax, u, rng, lambda, callback);

};
return ray.medium.Dispatch(sample);

}

With the concrete type of the medium available, we can proceed with the second instance of
SampleTmaj(), which can now be specialized based on that type.

〈Medium Sampling Function Definitions〉 +≡
template <typename ConcreteMedium, typename F>
SampledSpectrum SampleT_maj(Ray ray, Float tMax, Float u, RNG &rng,

const SampledWavelengths &lambda, F callback) {
〈Normalize ray direction and update tMax accordingly 861〉
〈Initialize MajorantIterator for ray majorant sampling 861〉
〈Generate ray majorant samples until termination 861〉

}

Length() 88

Medium::SampleRay() 719

Normalize() 88

Ray::d 95

Ray::medium 95

RayMajorantIterator::Next()
719

RayMajorantSegment 718

SampledSpectrum 171

SECTION 14.1 T H E E Q U A T I O N O F T R A N S F E R 861

The function starts by normalizing the ray’s direction so that parametric distance along
the ray directly corresponds to distance from the ray’s origin. This simplifies subsequent
transmittance computations in the remainder of the function. Since normalization scales the
direction’s length, the tMax endpoint must also be updated so that it corresponds to the same
point along the ray.

〈Normalize ray direction and update tMax accordingly〉 ≡ 860

tMax *= Length(ray.d);
ray.d = Normalize(ray.d);

Since the actual type of the medium is known and because all Medium implementations must
define a MajorantIterator type (recall Section 11.4.1), the medium’s iterator type can be
directly declared as a stack-allocated variable. This gives a number of benefits: not only is the
expense of dynamic allocation avoided, but subsequent calls to the iterator’s Next() method
in this function are regular method calls that can even be expanded inline by the compiler;
no dynamic dispatch is necessary for them. An additional benefit of knowing the medium’s
type is that the appropriate SampleRay() method can be called directly without incurring the
cost of dynamic dispatch here.

〈Initialize MajorantIterator for ray majorant sampling〉 ≡ 860

ConcreteMedium *medium = ray.medium.Cast<ConcreteMedium>();
typename ConcreteMedium::MajorantIterator iter =

medium->SampleRay(ray, tMax, lambda);

With an iterator initialized, sampling along the ray can proceed. The T_maj variable declared
here tracks the accumulated majorant transmittance from the ray origin or the previous
sample along the ray (depending on whether a sample has yet been generated).

〈Generate ray majorant samples until termination〉 ≡ 860

SampledSpectrum T_maj(1.f);
bool done = false;
while (!done) {

〈Get next majorant segment from iterator and sample it 861〉
}
return SampledSpectrum(1.f);

If the iterator has no further majorant segments to provide, then sampling is complete. In
this case, it is important to return any majorant transmittance that has accumulated in T_maj;
that represents the remaining transmittance to the ray’s endpoint. Otherwise, a few details are
attended to before sampling proceeds along the segment.

〈Get next majorant segment from iterator and sample it〉 ≡ 861

pstd::optional<RayMajorantSegment> seg = iter.Next();
if (!seg)

return T_maj;
〈Handle zero-valued majorant for current segment 862〉
〈Generate samples along current majorant segment 862〉

If the majorant has the value 0 in the first wavelength, then there is nothing to sample
along the segment. It is important to handle this case, since otherwise the subsequent call to
SampleExponential() in this function would return an infinite value that would subsequently
lead to not-a-number values. Because the other wavelengths may not themselves have zero-
valued majorants, we must still update T_maj for the segment’s majorant transmittance even
though the transmittance for the first wavelength is unchanged.

FastExp() 1036

Float 23

IsInf() 363

RayMajorantSegment::sigma_maj
718

RayMajorantSegment::tMax 718

RayMajorantSegment::tMin 718

RNG::Uniform<Float>() 1056

SampleExponential() 1003

862 L I G H T T R A N S P O R T I I : V O L U M E R E N D E R I N G CHAPTER 14

〈Handle zero-valued majorant for current segment〉 ≡ 861

if (seg->sigma_maj[0] == 0) {
Float dt = seg->tMax - seg->tMin;
〈Handle infinite dt for ray majorant segment 862〉
T_maj *= FastExp(-dt * seg->sigma_maj);
continue;

}

One edge case must be attended to before the exponential function is called. If tMax holds
the IEEE floating-point infinity value, then dt will as well; it then must be bumped down to
the largest finite Float. This is necessary because with floating-point arithmetic, zero times
infinity gives a not-a-number value (whereas any nonzero value times infinity gives infinity).
Otherwise, for any wavelengths with zero-valued sigma_maj, not-a-number values would be
passed to FastExp().

〈Handle infinite dt for ray majorant segment〉 ≡ 862

if (IsInf(dt))
dt = std::numeric_limits<Float>::max();

The implementation otherwise tries to generate a sample along the current segment. This
work is inside a while loop so that multiple samples may be generated along the segment.

〈Generate samples along current majorant segment〉 ≡ 861

Float tMin = seg->tMin;
while (true) {

〈Try to generate sample along current majorant segment 862〉
}

In the usual case, a distance is sampled according to the PDF σmaje
−σmajt . Separate cases

handle a sample that is within the current majorant segment and one that is past it.

One detail to note in this fragment is that as soon as the uniform sample u has been used,
a replacement is immediately generated using the provided RNG. In this way, the method
maintains the invariant that u is always a valid independent sample value. While this can
lead to a single excess call to RNG::Uniform() each time SampleT_maj() is called, it ensures the
initial u value provided to the method is used only once.

〈Try to generate sample along current majorant segment〉 ≡ 862

Float t = tMin + SampleExponential(u, seg->sigma_maj[0]);
u = rng.Uniform<Float>();
if (t < seg->tMax) {

〈Call callback function for sample within segment 863〉
} else {

〈Handle sample past end of majorant segment 863〉
}

For a sample within the segment’s extent, the final majorant transmittance to be passed to
the callback is found by accumulating the transmittance from tMin to the sample point. The
rest of the necessary medium properties can be found using SamplePoint(). If the callback
function returns false to indicate that sampling should conclude, then we have a doubly
nested while loop to break out of; a break statement takes care of the inner one, and setting
done to true causes the outer one to terminate.

FastExp() 1036

Float 23

Medium::SamplePoint() 717

MediumProperties 718

RayMajorantSegment::sigma_maj
718

RayMajorantSegment::tMax 718

SampledSpectrum 171

SECTION 14.1 T H E E Q U A T I O N O F T R A N S F E R 863

If true is returned by the callback, indicating that sampling should restart at the sample that
was just generated, then the accumulated transmittance is reset to 1 and tMin is updated to
be at the just-taken sample’s position.

〈Call callback function for sample within segment〉 ≡ 862

T_maj *= FastExp(-(t - tMin) * seg->sigma_maj);
MediumProperties mp = medium->SamplePoint(ray(t), lambda);
if (!callback(ray(t), mp, seg->sigma_maj, T_maj)) {

done = true;
break;

}
T_maj = SampledSpectrum(1.f);
tMin = t;

If the sampled distance t is past the end of the segment, then there is no medium interaction
along it and it is on to the next segment, if any. In this case, majorant transmittance up
to the end of the segment must be accumulated into T_maj so that the complete majorant
transmittance along the ray is provided with the next valid sample (if any).

〈Handle sample past end of majorant segment〉 ≡ 862

Float dt = seg->tMax - tMin;
T_maj *= FastExp(-dt * seg->sigma_maj);
break;

% 14.1.4 GENERALIZED PATH SPACE

Just as it was helpful to express the light transport equation (LTE) as a sum over paths of
scattering events, it is also helpful to express the null-scattering integral equation of transfer
in this form. Doing so makes it possible to apply variance reduction techniques like multiple
importance sampling and is a prerequisite for constructing participating medium-aware
bidirectional integrators.

Recall how, in Section 13.1.4, the surface form of the LTE was repeatedly substituted into
itself to derive the path space contribution function for a path of length n

P (p̄n) =
∫

A

∫

A

. . .
∫

A︸ ︷︷ ︸
n−1

Le(pn → pn−1) T (p̄n) dA(p2) . . . dA(pn),

where the throughput T (p̄n) was defined as

T (p̄n) =
n−1∏

i=1

f (pi+1 → pi → pi−1) G(pi+1 ↔ pi).

This previous definition only works for surfaces, but using a similar approach of substituting
the integral equation of transfer, a medium-aware path integral can be derived. The deriva-
tion is laborious and we will just present the final result here. (The “Further Reading” section
has a pointer to the full derivation.)

Previously, integration occurred over a Cartesian product of surface locations An. Now, we
will need a formal way of writing down an integral over an arbitrary sequence of each of
2D surface locations A, 3D positions in a participating medium V where actual scattering
occurs, and 3D positions in a participating medium V∅ where null scattering occurs. (The
two media V and V∅ represent the same volume of space with the same scattering properties,
but we will find it handy to distinguish between them in the following.)

864 L I G H T T R A N S P O R T I I : V O L U M E R E N D E R I N G CHAPTER 14

First, we will focus only on a specific arrangement of n surface and medium vertices encoded
in a configuration vector c. The associated set of paths is given by a Cartesian product of
surface locations and medium locations,

Pc
n = n×

i=1






A, if ci = 0
V, if ci = 1
V∅, if ci = 2.

The set of all paths of length n is the union of the above sets over all possible configuration
vectors:

Pn =
⋃

c∈{0,1,2}n
Pc

n.

Next, we define a measure, which provides an abstract notion of the volume of a subset
D ⊆ Pn that is essential for integration. The measure we will use simply sums up the product
of surface area and volume associated with the individual vertices in each of the path spaces
of specific configurations.

µn (D) =
∑

c∈{0,1}n
µc

n

(
D ∩ Pc

n

)
where µc

n (D) =
∫

D

n∏

i=1






dA(pi), if ci = 0
dV (pi), if ci = 1
dV∅(pi), if ci = 2.

The measure for null-scattering vertices dV∅ incorporates a Dirac delta distribution to limit
integration to be along the line between successive real-scattering vertices.

The generalized path contribution P̂ (p̄n) can now be written as

P̂ (p̄n) =
∫

Pn−1

L̂e(pn → pn−1) T̂ (p̄n) dµn−1(p2, . . . , pn), (14.9)

where

L̂e(pn → pn−1) =
{

Le(pn → pn−1) if pn ∈ A,
σa(pn)Le(pn → pn−1) if pn ∈ V .

(14.10)

Due to the measure defined earlier, the generalized path contribution is a sum of many
integrals considering all possible sequences of surface, volume, and null-scattering events.

The full set of path vertices pi include both null- and real-scattering events. We will find it
useful to use ri to denote the subset of them that represent real scattering (see Figure 14.5).
Note a given real-scattering vertex ri will generally have a different index value in the full
path.

The path throughput function T̂ (p̄n) can then be defined as:

T̂ (p̄n) =
(

n−1∏

i=1

f̂ (pi+1 → pi → pi−1)

) (
n−1∏

i=0

Tmaj(pi → pi+1)

)

×
(

m−1∏

i=1

Ĝ(ri ↔ ri+1)

) (14.11)

It now refers to a generalized scattering distribution function f̂ and generalized geometric
term Ĝ. The former simply falls back to the BSDF, phase function (multiplied by σs), or
a factor that enforces the ordering of null-scattering vertices, depending on the type of the
vertex pi. Note that the first two products in Equation (14.11) are over all vertices but the
third is only over real-scattering vertices.

SECTION 14.1 T H E E Q U A T I O N O F T R A N S F E R 865

p0
r0

p1 r1

p2

r2

p3

r3

p4

Figure 14.5: In the path space framework, a path is defined by a set of n vertices pi that have an emitter at
one endpoint and a sensor at the other, where intermediate vertices represent scattering events, including
null scattering. The subset of m vertices that represent real scattering events are labeled ri.

The scattering distribution function f̂ is defined by

f̂ (pi+1 → pi → pi−1) =






f (pi+1 → pi → pi−1), if pi ∈ A

σs(pi) p (pi+1 → pi → pi−1), if pi ∈ V

σn(pi) H((pi − pi+1) . (pi−1 − pi)), if pi ∈ V∅.
(14.12)

Here, H is the Heaviside function, which is 1 if its parameter is positive and 0 otherwise.

Equation (13.2) in Section 13.1.3 originally defined the geometric term G as

G(p ↔ p′) = V (p ↔ p′)
|cos θ | |cos θ ′|
‖ p − p′ ‖2

.

A generalized form of this geometric term is given by

Ĝ(p ↔ p′) = V (p ↔ p′)
Cp(p, p′) Cp′(p′, p)

‖ p − p′ ‖2
, (14.13)

where

Cp(p, p′) =
{ ∣∣∣np . p−p′

‖p−p′‖
∣∣∣ , if p ∈ A

1, if p ∈ V

incorporates the absolute angle cosine between the connection segment and the normal
direction when the underlying vertex p is located on a surface. Note that Cp is only evaluated
for real-scattering vertices ri , so the case of p ∈ V∅ does not need to be considered.

Similar to integrating over the path space for surface scattering, the Monte Carlo estimator
for the path contribution function P̂ can be defined for a path p̄n of n path vertices pi . The
resulting Monte Carlo estimator is

P̂ (p̄n) = T̂ (p̄n) L̂e(pn → pn−1)

p(p̄n)
, (14.14)

866 L I G H T T R A N S P O R T I I : V O L U M E R E N D E R I N G CHAPTER 14

where p(p̄n) is the probability of sampling the path p̄n with respect to the generalized path
space measure.

Following Equation (13.8), we will also find it useful to define the volumetric path through-
put weight

β(p̄n) = T̂ (p̄n)

p(p̄n)
. (14.15)

% 14.1.5 EVALUATING THE VOLUMETRIC PATH INTEGRAL

The Monte Carlo estimator of the null-scattering path integral from Equation (14.14) allows
sampling path vertices in a variety of ways; it is not necessary to sample them incrementally
from the camera as in path tracing, for example. We will now reconsider sampling paths
via path tracing under the path integral framework to show its use. For simplicity, we will
consider scenes that have only volumetric scattering here.

The volumetric path-tracing algorithm from Section 14.1.2 is based on three sampling oper-
ations: sampling a distance along the current ray to a scattering event, choosing which type
of interaction happens at that point, and then sampling a new direction from that point if the
path has not been terminated. We can write the corresponding Monte Carlo estimator for the
generalized path contribution function P̂ from Equation (14.14) with the path probability
p(p̄n) expressed as the product of three probabilities:

. pmaj(pi+1|pi, ωi): the probability of sampling the point pi+1 along the direction ωi

from the point pi .
. pe(pi): the discrete probability of sampling the type of scattering event—absorption,

real-, or null-scattering—that was chosen at pi .
. pω(ω′|ri, ωi): the probability of sampling the direction ω′ after a regular scattering

event at point ri with incident direction ωi .

For an n vertex path with m real-scattering vertices, the resulting estimator is

T̂ (p̄n) L̂e(pn → pn−1)(
n−1∏

i=0
pmaj(pi+1|pi, ωi)

) (
n∏

i=1
pe(pi)

) (
m−1∏

i=1
pω(ωi+1|ri, ωi) Ĝ(ri ↔ ri+1)

) , (14.16)

where ωi denotes the direction from pi to pi+1 and where the Ĝ factor in the denominator
accounts for the change of variables from sampling with respect to solid angle to sampling
with respect to the path space measure.

We consider each of the three sampling operations in turn, starting with distance sampling,
which has density pmaj. Assuming a single majorant σmaj, we find that pmaj has density

σmaje
−σmajt , and the exponential factors cancel out the Tmaj factors in T̂ , each one leaving be-

hind a 1/σmaj factor. Expanding out T̂ and simplifying, including eliminating the Ĝ factors,
all of which also cancel out, we have the estimator

P̂ (p̄n) =

(
n−1∏

i=1
f̂ (pi+1 → pi → pi−1)

)
L̂e(pn → pn−1)

(σmaj)
n

(
n∏

i=1
pe(pi)

) (
m−1∏

i=1
pω(ωi+1|ri, ωi)

) . (14.17)

Consider next the discrete choice among the three types of scattering event. The probabilities
pe are all of the form σ{a,s,n}/σmaj, according to which type of scattering event was chosen at

PathIntegrator 833

RandomWalkIntegrator 33

VolPathIntegrator 877

SECTION 14.2 V O L U M E S C A T T E R I N G I N T E G R A T O R S 867

each vertex. The (σmaj)
n factor in Equation (14.17) cancels, leaving us with

P̂ (p̄n) =

(
n−1∏

i=1
f̂ (pi+1 → pi → pi−1)

)
L̂e(pn → pn−1)

(
n∏

i=1
σ{a,s,n}i (pi)

) (
m−1∏

i=1
pω(ωi+1|ri, ωi)

) .

The first n − 1 σ{a,s,n} factors must be either real or null scattering, and the last must be σa,
given how the path was sampled. Thus, the estimator is equivalent to

P̂ (p̄n) =

(
n−1∏

i=1
f̂ (pi+1 → pi → pi−1)

)
L̂e(pn → pn−1)

(
n−1∏

i=1
σ{s,n}i (pi)

)
σa(pn)

(
m−1∏

i=1
pω(ωi+1|ri, ωi)

) . (14.18)

Because we are for now neglecting surface scattering, f̂ represents either regular volumetric
scattering or null scattering. Recall from Equation (14.12) that f̂ includes a σs or σn factor in
those respective cases, which cancels out all the corresponding factors in the σ{s,n} product in

the denominator. Further, note that the Heaviside function for null scattering’s f̂ function is
always 1 given how vertices are sampled with path tracing, so we can also restrict ourselves
to the remaining m real-scattering events in the numerator. Our estimator simplifies to

P̂ (p̄n) =
(

m−1∏

i=1

p(ri−1 → ri → ri+1)

pω(ωi+1|ri, ωi)

)
L̂e(pn → pn−1)

σa(pn)
. (14.19)

The σa factor in the path space emission function, Equation (14.10), cancels the remaining
σa(pn). We are left with the emission Le(pn → pn−1) at the last vertex scaled by the product
of ratios of phase function values and sampling probabilities as the estimator’s value, just as
we saw in Section 14.1.2.

14.2 VOLUME SCATTERING INTEGRATORS

The path space expression of the null-scattering equation of transfer allows a variety of
sampling techniques to be applied to the light transport problem. This section defines two
integrators that are based on path tracing starting from the camera.

First is the SimpleVolPathIntegrator, which uses simple sampling techniques, giving an
implementation that is short and easily verified. This integrator is particularly useful for
computing ground-truth results when debugging more sophisticated volumetric sampling
and integration algorithms.

The VolPathIntegrator is defined next. This integrator is fairly complex, but it applies state-
of-the-art sampling techniques to volume light transport while handling surface scattering
similarly to the PathIntegrator. It is pbrt’s default integrator and is also the template for the
wavefront integrator in Chapter 15.

14.2.1 A SIMPLE VOLUMETRIC INTEGRATOR

The SimpleVolPathIntegrator implements a basic volumetric path tracer, following the sam-
pling approach described in Section 14.1.2. Its Li() method is under 100 lines of code, none
of them too tricky. However, with this simplicity comes a number of limitations. First, like
the RandomWalkIntegrator, it does not perform any explicit light sampling, so it requires that

RayIntegrator 28

SimpleVolPathIntegrator 868

VolPathIntegrator 877

868 L I G H T T R A N S P O R T I I : V O L U M E R E N D E R I N G CHAPTER 14

Figure 14.6: Explosion Rendered Using the SimpleVolPathIntegrator. With 256 samples per pixel,
this integrator gives a reasonably accurate rendering of the volumetric model, though there are variance
spikes in some pixels (especially visible toward the bottom of the volume) due to error from the integrator
not directly sampling the scene’s light sources. The VolPathIntegrator, which uses more sophisticated
sampling strategies, renders this scene with 1,288 times lower MSE; it is discussed in Section 14.2.2.
(Scene courtesy of Jim Price.)

rays are able to randomly intersect the lights in the scene. Second, it does not handle scatter-
ing from surfaces. An error message is therefore issued if it is used with a scene that contains
delta distribution light sources or has surfaces with nonzero-valued BSDFs. (These defects
are all addressed in the VolPathIntegrator discussed in Section 14.2.2.) Nevertheless, this
integrator is capable of rendering complex volumetric effects; see Figure 14.6.

〈SimpleVolPathIntegrator Definition〉 ≡
class SimpleVolPathIntegrator : public RayIntegrator {

public:
〈SimpleVolPathIntegrator Public Methods〉

private:
〈SimpleVolPathIntegrator Private Members 869〉

};

Float 23

PathIntegrator 833

RayDifferential 96

SampledSpectrum 171

SampledWavelengths 173

SampledWavelengths::
TerminateSecondary()
174

Sampler 469

SampleT_maj() 859

ScratchBuffer 1078

VisibleSurface 245

VolPathIntegrator 877

SECTION 14.2 V O L U M E S C A T T E R I N G I N T E G R A T O R S 869

This integrator’s only parameter is the maximum path length, which is set via a value passed
to the constructor (not included here).

〈SimpleVolPathIntegrator Private Members〉 ≡ 868

int maxDepth;

The general form of the Li() method follows that of the PathIntegrator.

〈SimpleVolPathIntegrator Method Definitions〉 ≡
SampledSpectrum SimpleVolPathIntegrator::Li(RayDifferential ray,

SampledWavelengths &lambda, Sampler sampler, ScratchBuffer &buf,
VisibleSurface *) const {

〈Declare local variables for delta tracking integration 869〉
〈Terminate secondary wavelengths before starting random walk 869〉
while (true) {

〈Estimate radiance for ray path using delta tracking 870〉
}
return L;

}

A few familiar variables track the path state, including L to accumulate the radiance estimate
for the path. For this integrator, beta, which tracks the path throughput weight, is just a
single Float value, since the product of ratios of phase function values and sampling PDFs
from Equation (14.19) is a scalar value.

〈Declare local variables for delta tracking integration〉 ≡ 869

SampledSpectrum L(0.f);
Float beta = 1.f;
int depth = 0;

Media with scattering properties that vary according to wavelength introduce a number
of complexities in sampling and evaluating Monte Carlo estimators. We will defer ad-
dressing them until we cover the VolPathIntegrator. The SimpleVolPathIntegrator in-
stead estimates radiance at a single wavelength by terminating all but the first wavelength
sample.

Here is a case where we have chosen simplicity over efficiency for this integrator’s implemen-
tation: we might instead have accounted for all wavelengths until the point that spectrally
varying scattering properties were encountered, enjoying the variance reduction benefits of
estimating all of them for scenes where doing so is possible. However, doing this would have
led to a more complex integrator implementation.

〈Terminate secondary wavelengths before starting random walk〉 ≡ 869

lambda.TerminateSecondary();

The first step in the loop is to find the ray’s intersection with the scene geometry, if any. This
gives the parametric distance t beyond which no samples should be taken for the current
ray, as the intersection either represents a transition to a different medium or a surface that
occludes farther-away points.

The scattered and terminated variables declared here will allow the lambda function that is
passed to SampleT_maj() to report back the state of the path after sampling terminates.

Float 23

Hash() 1042

Infinity 361

Integrator::Intersect() 23

MediumProperties 718

MediumProperties::sigma_a
718

MediumProperties::sigma_s
718

Point3f 92

Ray::medium 95

RNG 1054

SampledSpectrum 171

Sampler 469

Sampler::Get1D() 470

SampleT_maj() 859

ShapeIntersection 266

ShapeIntersection::tHit 266

870 L I G H T T R A N S P O R T I I : V O L U M E R E N D E R I N G CHAPTER 14

〈Estimate radiance for ray path using delta tracking〉 ≡ 869

pstd::optional<ShapeIntersection> si = Intersect(ray);
bool scattered = false, terminated = false;
if (ray.medium) {

〈Initialize RNG for sampling the majorant transmittance 870〉
〈Sample medium using delta tracking 870〉

}
〈Handle terminated and unscattered rays after medium sampling 872〉

An RNG is required for the call to the SampleT_maj() function. We derive seeds for it based on
two random values from the sampler, hashing them to convert Floats into integers.

〈Initialize RNG for sampling the majorant transmittance〉 ≡ 870, 880

uint64_t hash0 = Hash(sampler.Get1D());
uint64_t hash1 = Hash(sampler.Get1D());
RNG rng(hash0, hash1);

With that, a call to SampleT_maj() starts the generation of samples according to σmajTmaj.
The Sampler is used to generate the first uniform sample u that is passed to the method;
recall from Section 14.1.3 that subsequent ones will be generated using the provided RNG.
In a similar fashion, the Sampler is used for the initial value of uMode here. It will be used to
choose among the three types of scattering event at the first sampled point. For uMode as well,
the RNG will provide subsequent values.

In this case, the transmittance that SampleT_maj() returns for the final segment is unneeded,
so it is ignored.

〈Sample medium using delta tracking〉 ≡ 870

Float tMax = si ? si->tHit : Infinity;
Float u = sampler.Get1D();
Float uMode = sampler.Get1D();
SampleT_maj(ray, tMax, u, rng, lambda,

[&](Point3f p, MediumProperties mp, SampledSpectrum sigma_maj,
SampledSpectrum T_maj) {
〈Compute medium event probabilities for interaction 870〉
〈Randomly sample medium scattering event for delta tracking 871〉

});

For each sample returned by SampleT_maj(), it is necessary to select which type of scattering
it represents. The first step is to compute the probability of each possibility. Because we
have specified σn such that it is nonnegative and σa + σs + σn = σmaj, the null-scattering
probability can be found as one minus the other two probabilities. A call to std::max()
ensures that any slightly negative values due to floating-point round-off error are clamped
at zero.

〈Compute medium event probabilities for interaction〉 ≡ 870, 880

Float pAbsorb = mp.sigma_a[0] / sigma_maj[0];
Float pScatter = mp.sigma_s[0] / sigma_maj[0];
Float pNull = std::max<Float>(0, 1 - pAbsorb - pScatter);

A call to SampleDiscrete() then selects one of the three terms of Ln using the specified
probabilities.

Float 23

MediumProperties::Le 718

MediumProperties::phase 718

PhaseFunction::Sample_p()
711

PhaseFunctionSample 711

Point2f 92

Ray::d 95

RNG::Uniform<Float>() 1056

SampleDiscrete() 70

SimpleVolPathIntegrator::
maxDepth
869

SECTION 14.2 V O L U M E S C A T T E R I N G I N T E G R A T O R S 871

〈Randomly sample medium scattering event for delta tracking〉 ≡ 870

int mode = SampleDiscrete({pAbsorb, pScatter, pNull}, uMode);
if (mode == 0) {

〈Handle absorption event for medium sample 871〉
} else if (mode == 1) {

〈Handle regular scattering event for medium sample 871〉
} else {

〈Handle null-scattering event for medium sample 872〉
}

If absorption is chosen, the path terminates. Any emission is added to the radiance estimate,
and evaluation of Equation (14.19) is complete. The fragment therefore sets terminated to
indicate that the path is finished and returns false from the lambda function so that no
further samples are generated along the ray.

〈Handle absorption event for medium sample〉 ≡ 871

L += beta * mp.Le;
terminated = true;
return false;

For a scattering event, beta is updated according to the ratio of phase function and its
directional sampling probability from Equation (14.19).

〈Handle regular scattering event for medium sample〉 ≡ 871

〈Stop path sampling if maximum depth has been reached 871〉
〈Sample phase function for medium scattering event 871〉
〈Update state for recursive evaluation of Li 872〉

The counter for the number of scattering events is only incremented for real-scattering
events; we do not want the number of null-scattering events to affect path termination. If
this scattering event causes the limit to be reached, the path is terminated.

〈Stop path sampling if maximum depth has been reached〉 ≡ 871, 882

if (depth++ >= maxDepth) {
terminated = true;
return false;

}

If the path is not terminated, then a new direction is sampled from the phase function’s
distribution.

〈Sample phase function for medium scattering event〉 ≡ 871

Point2f u{rng.Uniform<Float>(), rng.Uniform<Float>()};
pstd::optional<PhaseFunctionSample> ps = mp.phase.Sample_p(-ray.d, u);
if (!ps) {

terminated = true;
return false;

}

Given a sampled direction, the beta factor must be updated. Volumetric path-tracing imple-
mentations often assume that the phase function sampling distribution matches the phase
function’s actual distribution and dispense with beta entirely since it is always equal to 1.
This variation is worth pausing to consider: in that case, emitted radiance at the end of the
path is always returned, unscaled. All of the effect of transmittance, phase functions, and so
forth is entirely encapsulated in the distribution of how often various terms are evaluated

Float 23

Integrator::infiniteLights 23

Light::Le() 743

PhaseFunctionSample::p 711

PhaseFunctionSample::pdf 711

PhaseFunctionSample::wi 711

Ray::d 95

Ray::o 95

RNG::Uniform<Float>() 1056

ShapeIntersection::intr 266

SurfaceInteraction::Le() 762

872 L I G H T T R A N S P O R T I I : V O L U M E R E N D E R I N G CHAPTER 14

and in the distribution of scattered ray directions. pbrt does not impose the requirement on
phase functions that their importance sampling technique be perfect, though this is the case
for the Henyey–Greenstein phase function in pbrt.

Be it with beta or without, there is no need to do any further work along the current ray after
a scattering event, so after the following code updates the path state to account for scattering,
it too returns false to direct that no further samples should be taken along the ray.

〈Update state for recursive evaluation of Li〉 ≡ 871

beta *= ps->p / ps->pdf;
ray.o = p;
ray.d = ps->wi;
scattered = true;
return false;

Null-scattering events are ignored, so there is nothing to do but to return true to indicate that
additional samples along the current ray should be taken. Similar to the real-scattering case,
this can be interpreted as starting a recursive evaluation of Equation (14.3) from the current
sampled position without incurring the overhead of actually doing so. Since this is the only
case that may lead to another invocation of the lambda function, uMode must be refreshed
with a new uniform sample value in case another sample is generated.

〈Handle null-scattering event for medium sample〉 ≡ 871

uMode = rng.Uniform<Float>();
return true;

If the path was terminated due to absorption, then there is no more work to do in the Li()
method; the final radiance value can be returned. Further, if the ray was scattered, then there
is nothing more to do but to restart the while loop and start sampling the scattered ray.
Otherwise, the ray either underwent no scattering events or only underwent null scattering.

〈Handle terminated and unscattered rays after medium sampling〉 ≡ 870

if (terminated) return L;
if (scattered) continue;
〈Add emission to surviving ray 872〉
〈Handle surface intersection along ray path 873〉

If the ray is unscattered and unabsorbed, then any emitters it interacts with contribute radi-
ance to the path. Either surface emission or emission from infinite light sources is accounted
for, depending on whether an intersection with a surface was found. Further, if the ray did
not intersect a surface, then the path is finished and the radiance estimate can be returned.

〈Add emission to surviving ray〉 ≡ 872

if (si)
L += beta * si->intr.Le(-ray.d, lambda);

else {
for (const auto &light : infiniteLights)

L += beta * light.Le(ray, lambda);
return L;

}

It is still necessary to consider surface intersections, even if scattering from them is not
handled by this integrator. There are three cases to consider:

. If the surface has no BSDF, it represents a transition between different types of partic-
ipating media. A call to SkipIntersection() moves the ray past the intersection and
updates its medium appropriately.

BSDF 544

SampledSpectrum 171

ShapeIntersection::intr 266

ShapeIntersection::tHit 266

SimpleVolPathIntegrator 868

SurfaceInteraction::GetBSDF()
682

SurfaceInteraction::
SkipIntersection()
643

SECTION 14.2 V O L U M E S C A T T E R I N G I N T E G R A T O R S 873

. If there is a valid BSDF and that BDSF also returns a valid sample from Sample_f(), then
we have a BSDF that scatters; an error is issued and rendering stops.

. A valid but zero-valued BSDF is allowed; such a BSDF should be assigned to area light
sources in scenes to be rendered using this integrator.

〈Handle surface intersection along ray path〉 ≡ 872

BSDF bsdf = si->intr.GetBSDF(ray, lambda, camera, buf, sampler);
if (!bsdf)

si->intr.SkipIntersection(&ray, si->tHit);
else {

〈Report error if BSDF returns a valid sample〉
}

% 14.2.2 IMPROVING THE SAMPLING TECHNIQUES

The VolPathIntegrator adds three significant improvements to the approach implemented
in SimpleVolPathIntegrator: it supports scattering from surfaces as well as from volumes;
it handles spectrally varying medium scattering properties without falling back to sampling
a single wavelength; and it samples lights directly, using multiple importance sampling to
reduce variance when doing so. The first improvement—including surface scattering—is
mostly a matter of applying the ideas of Equation (14.7), sampling distances in volumes
but then choosing surface scattering if the sampled distance is past the closest intersection.
For the other two, we will here discuss the underlying foundations before turning to their
implementation.

Chromatic Media
We have thus far glossed over some of the implications of spectrally varying medium prop-
erties. Because pbrt uses point-sampled spectra, they introduce no complications in terms
of evaluating things like the modified path throughput T̂ (p̄n) or the path throughput weight
β(p̄n): given a set of path vertices, such quantities can be evaluated for all the wavelength
samples simultaneously using the SampledSpectrum class.

The problem with spectrally varying medium properties comes from sampling. Consider a
wavelength-dependent function fλ(x) that we would like to integrate at n wavelengths λi . If
we draw samples x ∼ pλ1

from a wavelength-dependent PDF based on the first wavelength
and then evaluate f at all the wavelengths, we have the estimators

[
fλ1

(x), fλ2
(x), . . . , fλn

(x)
]

pλ1
(x)

.

Even if the PDF pλ1
that was used for sampling matches fλ1

well, it may be a poor match
for f at the other wavelengths. It may not even be a valid PDF for them, if it is zero-valued
where the function is nonzero. However, falling back to integrating a single wavelength at a
time would be unfortunately inefficient, as shown in Section 4.5.4.

This problem of a single sampling PDF possibly mismatched with a wavelength-dependent
function comes up repeatedly in volumetric path tracing. For example, sampling the majo-
rant transmittance at one wavelength may be a poor approach for sampling it at others. That
could be handled by selecting a majorant that bounds all wavelengths’ extinction coefficients,
but such a majorant would lead to many null-scattering events at wavelengths that could have
used a much lower majorant, which would harm performance.

The path tracer’s choice among absorption, real scattering, and null scattering at a sampled
point cannot be sidestepped in a similar way: different wavelengths may have quite different

PathIntegrator 833

SampleT_maj() 859

VolPathIntegrator 877

874 L I G H T T R A N S P O R T I I : V O L U M E R E N D E R I N G CHAPTER 14

probabilities for each of these types of medium interaction, yet with path tracing the inte-
grator must choose only one of them. Splitting up the computation to let each wavelength
choose individually would be nearly as inefficient as only considering a single wavelength at
a time.

However, if a single type of interaction is chosen based on a single wavelength and we evaluate
the modified path contribution function P̂ for all wavelengths, we could have arbitrarily
high variance in the other wavelengths. To see why, note how all the σ{s,n} factors that came
from the pe(pi) factors in Equation (14.18) canceled out to give the delta-tracking estimator,
Equation (14.19). In the spectral case, if, for example, real scattering is chosen based on a
wavelength λ’s scattering coefficient σs and if a wavelength λ′ has scattering coefficient σ ′

s ,
then the final estimator for λ′ will include a factor of σ ′

s/σs that can be arbitrarily large.

The fact that SampleT_maj() nevertheless samples according to a single wavelength’s majorant
transmittance suggests that there is a solution to this problem. That solution, yet again, is
multiple importance sampling. In this case, we are using a single sampling technique rather
than MIS-weighting multiple techniques, so we use the single-sample MIS estimator from
Equation (2.16), which here gives

wλ1
(x)

q

[
fλ1

(x), fλ2
(x), . . . , fλn

(x)
]

pλ1
(x)

,

where q is the discrete probability of sampling using the wavelength λ1, here uniform at 1/n

with n the number of spectral samples.

The balance heuristic is optimal for single-sample MIS. It gives the MIS weight

wλ1
(x) =

pλ1
(x)

∑n
i pλi

(x)
,

which gives the estimator

pλ1
(x)

1
n

∑n
i pλi

(x)

[
fλ1

(x), fλ2
(x), . . . , fλn

(x)
]

pλ1
(x)

=

[
fλ1

(x), fλ2
(x), . . . , fλn

(x)
]

1
n

∑n
i pλi

(x)
. (14.20)

See Figure 14.7 for an example that shows the benefits of MIS for chromatic media.

Direct Lighting
Multiple importance sampling is also at the heart of how the VolPathIntegrator samples
direct illumination. As with the PathIntegrator, we would like to combine the strategies of
sampling the light sources with sampling the BSDF or phase function to find light-carrying
paths and then to weight the contributions of each sampling technique using MIS. Doing
so is more complex than it is in the absence of volumetric scattering, however, because not
only does the sampling distribution used at the last path vertex differ (as before) but the
VolPathIntegrator also uses ratio tracking to estimate the transmittance along the shadow
ray. That is a different distance sampling technique than the delta-tracking approach used
when sampling ray paths, and so it leads to a different path PDF.

In the following, we will say that the two path-sampling techniques used in the VolPath
Integrator are unidirectional path sampling and light path sampling ; we will write their
respective path PDFs as pu and pl. The first corresponds to the sampling approach from
Section 14.1.5, with delta tracking used to find real-scattering vertices and with the phase
function or BSDF sampled to find the new direction at each vertex. Light path sampling fol-
lows the same approach up to the last real-scattering vertex before the light vertex; there, the

VolPathIntegrator 877

SECTION 14.2 V O L U M E S C A T T E R I N G I N T E G R A T O R S 875

(a)

(b)

Figure 14.7: Chromatic Volumetric Media. (a) When rendered without spectral MIS, variance is high.
(b) Results are much better with spectral MIS, as implemented in the VolPathIntegrator. For this scene,
MSE is reduced by a factor of 149. (Scene courtesty of Jim Price.)

Figure 14.8: In the direct lighting calculation, at each path vertex a point is sampled on a light source and a
shadow ray (dotted line) is traced. The VolPathIntegrator uses ratio tracking to compute the transmittance
along the ray by accumulating the product σn/σmaj at sampled points along the ray (open circles). For the
MIS weight, it is necessary to be able not only to compute the PDF for sampling the corresponding direction
at the last path vertex but also to compute the probability of generating these samples using delta tracking,
since that is how the path would be sampled with unidirectional path sampling.

light selects the direction and then ratio tracking gives the transmittance along the last path
segment. (See Figure 14.8.) Given a path p̄n−1, both approaches share the same path through-
put weight β up to the vertex pn−1 and the same path PDF up to that vertex, pu(p̄n−1).2

For the full PDF for unidirectional path sampling, at the last scattering vertex we have the
probability of scattering, σs(pn−1)/σmaj times the directional probability for sampling the

2 Strictly speaking, two such paths ending at the same point on a light may have a different number of vertices
due to different numbers of null-scattering vertices along the last segment. To simplify notation, we will here
describe both as n vertex paths with pn the point on the light and pn−1 the scattering vertex immediately before
it; we will index intermediate vertices on the last segment independently.

VolPathIntegrator 877

876 L I G H T T R A N S P O R T I I : V O L U M E R E N D E R I N G CHAPTER 14

new direction pω(ωn), which is given by the sampling strategy used for the BSDF or phase
function. Then, for the path to find an emitter at the vertex pn, it must have only sampled
null-scattering vertices between pn−1 and pn; absorption or a real-scattering vertex preclude
making it to pn.

Using the results from Section 14.1.5, we can find that the path PDF between two points pi

and pj with m intermediate null-scattering vertices indexed by k is given by the product of

pe(pi+k) = σn(pi+k)

σmaj
and

pmaj(pi+k) = σmajTmaj(pi+k−1 → pi+k)

for all null-scattering vertices. The σmaj factors cancel and the null-scattering path probabil-
ity is

pnull(pi, pj) =
(

m∏

k=1

σn(pi+k) Tmaj(pi+k−1 → pi+k)

)

Tmaj(pi+m → pj).

The full unidirectional path probability is then given by

pu(p̄n) = pu(p̄n−1)
σs(pn−1)

σmaj
pω(ωn) pnull(pn−1, pn). (14.21)

For light sampling, we again have the discrete probability σs(pn−1)/σmaj for scattering at
pn−1 but the directional PDF at the vertex is determined by the light’s sampling distribution,
which we will denote by pl,ω(ωn). The only missing piece is the PDF of the last segment (the
shadow ray), where ratio tracking is used. In that case, points are sampled according to the
majorant transmittance and so the PDF for a path sampled between points pi and pj with m

intermediate vertices is

pratio(pi, pj) =
(

m∏

k=1

Tmaj(pi+k−1 → pi+k) σmaj

)

, Tmaj(pi+m → pj), (14.22)

and the full light sampling path PDF is given by

pl(p̄n) = pu(p̄n−1)
σs(pn−1)

σmaj
pl,ω(ωn) pratio(pn−1, pn). (14.23)

The VolPathIntegrator samples both types of paths according to the first wavelength λ1 but
evaluates these PDFs at all wavelengths so that MIS over wavelengths can be used. Given the
path p̄n sampled using unidirectional path sampling and then the path p̄′

n sampled using
light path sampling, the two-sample MIS estimator is

wu(p̄n)
T̂ (p̄n) Le(pn → pn−1)

pu,λ1
(p̄n)

+ wl(p̄′
n)

T̂ (p̄′
n) Le(p′ → p′

n−1)

pl,λ1
(p̄′

n)
. (14.24)

Note that because the paths share the same vertices for all of p̄n−1, not only do the two
T̂ factors share common factors, but pu,λ1

(p̄n) and pl,λ1
(p̄′

n) do as well, following Equa-
tions (14.21) and (14.23).

In this case, the MIS weights can account not only for the differences between unidirectional
and light path sampling but also for the different per-wavelength probabilities for each sam-
pling strategy. For example, with the balance heuristic, the MIS weight for the unidirectional
strategy works out to be

LightSampler 781

PathIntegrator 833

RayIntegrator 28

VolPathIntegrator 877

SECTION 14.2 V O L U M E S C A T T E R I N G I N T E G R A T O R S 877

wu(p̄n) =
pu,λ1

(p̄n)

1
m

(∑m
i pu,λi

(p̄n) + ∑m
i pl,λi

(p̄n)
) , (14.25)

with m the number of spectral samples. The MIS weight for light sampling is equivalent, but
with the pu,λ1

function in the numerator replaced with pl,λ1
.

% 14.2.3 IMPROVED VOLUMETRIC INTEGRATOR

The VolPathIntegrator pulls together all of these ideas to robustly handle both surface and
volume transport. See Figures 14.9 and 14.10 for images rendered with this integrator that
show off the visual complexity that comes from volumetric emission, chromatic media, and
multiple scattering in participating media.

〈VolPathIntegrator Definition〉 ≡
class VolPathIntegrator : public RayIntegrator {

public:
〈VolPathIntegrator Public Methods〉

private:
〈VolPathIntegrator Private Methods〉
〈VolPathIntegrator Private Members 877〉

};

As with the other Integrator constructors that we have seen so far, the VolPathIntegrator
constructor does not perform any meaningful computation, but just initializes member
variables with provided values. These three are all equivalent to their parallels in the Path
Integrator.

〈VolPathIntegrator Private Members〉 ≡ 877

int maxDepth;
LightSampler lightSampler;
bool regularize;

Figure 14.9: Volumetric Emission inside Lightbulbs. The flames in each lightbulb are modeled with
participating media and rendered with the VolPathIntegrator. (Scene courtesy of Jim Price.)

RayDifferential 96

SampledSpectrum 171

SampledWavelengths 173

Sampler 469

ScratchBuffer 1078

VisibleSurface 245

VolPathIntegrator 877

878 L I G H T T R A N S P O R T I I : V O L U M E R E N D E R I N G CHAPTER 14

Figure 14.10: Volumetric Scattering in Liquid. Scattering in the paint-infused water is modeled with
participating media and rendered with the VolPathIntegrator. (Scene courtesy of Angelo Ferretti.)

〈VolPathIntegrator Method Definitions〉 ≡
SampledSpectrum VolPathIntegrator::Li(RayDifferential ray,

SampledWavelengths &lambda, Sampler sampler,
ScratchBuffer &scratchBuffer, VisibleSurface *visibleSurf) const {

〈Declare state variables for volumetric path sampling 879〉
while (true) {

〈Sample segment of volumetric scattering path 879〉
}
return L;

}

There is a common factor of pu,λ1
(p̄n) in the denominator of the first term of the two-sample

MIS estimator, Equation (14.24), and the numerator of the MIS weights, Equation (14.25).
There is a corresponding pl,λ1

factor in the second term of the estimator and in the wl
weight. It is tempting to cancel these out; in that case, the path state to be tracked by the
integrator would consist of T̂ (p̄n) and the wavelength-dependent probabilities pu(p̄n) and
pl(p̄n). Doing so is mathematically valid and would provide all the quantities necessary to

Float 23

Integrator::Intersect() 23

PathIntegrator 833

Ray::medium 95

SampledSpectrum 171

ShapeIntersection 266

SimpleVolPathIntegrator 868

SECTION 14.2 V O L U M E S C A T T E R I N G I N T E G R A T O R S 879

evaluate Equation (14.24), but suffers from the problem that the quantities involved may
overflow or underflow the range of representable floating-point values.

To understand the problem, consider a highly specular surface—the BSDF will have a large
value for directions around its peak, but the PDF for sampling those directions will also be
large. That causes no problems in the PathIntegrator, since its beta variable tracks their
ratio, which ends up being close to 1. However, with T̂ (p̄n) maintained independently, a
series of specular bounces could lead to overflow. (Many null-scattering events along a path
can cause similar problems.)

Therefore, the VolPathIntegrator tracks the path throughput weight for the sampled path

β(p̄n) = T̂ (p̄n)

pu,λ1
(p̄n)

,

which is numerically well behaved. Directly tracking the probabilities pu(p̄n) and pl(p̄n)

would also stress the range of floating-point numbers, so instead it tracks the rescaled path
probabilities

ru,λi
(p̄n) =

pu,λi
(p̄n)

ppath(p̄n)
and rl,λi

(p̄n) =
pl,λi

(p̄n)

ppath(p̄n)
, (14.26)

where ppath(p̄n) is the probability for sampling the current path. It is equal to the light
path probability pl,λ1

for paths that end with a shadow ray from light path sampling and
the unidirectional path probability otherwise. (Later in the implementation, we will take
advantage of the fact that these two probabilities are the same until the last scattering vertex,
which in turn implies that whichever of them is chosen for ppath does not affect the values of
ru,λi

(p̄n−1) and rl,λi
(p̄n−1).)

These rescaled path probabilities are all easily incrementally updated during path sampling.
If ppath = pu,λ1

, then MIS weights like those in Equation (14.25) can be found with

wu(p̄n) = 1
1
m

(∑m
i ru,λi

(p̄n) + ∑m
i rl,λi

(p̄n)
) , (14.27)

and similarly for wl when ppath = pl,λ1
.

The remaining variables in the following fragment have the same function as the variables of
the same names in the PathIntegrator.

〈Declare state variables for volumetric path sampling〉 ≡ 878

SampledSpectrum L(0.f), beta(1.f), r_u(1.f), r_l(1.f);
bool specularBounce = false, anyNonSpecularBounces = false;
int depth = 0;
Float etaScale = 1;

The while loop for each ray segment starts out similarly to the corresponding loop in the
SimpleVolPathIntegrator: the integrator traces a ray to find a tmax value at the closest surface
intersection before sampling the medium, if any, between the ray origin and the intersection
point.

〈Sample segment of volumetric scattering path〉 ≡ 878

pstd::optional<ShapeIntersection> si = Intersect(ray);
if (ray.medium) {

〈Sample the participating medium 880〉
}
〈Handle surviving unscattered rays 884〉

Float 23

Infinity 361

MediumProperties 718

MediumProperties::Le 718

Point3f 92

RNG 1054

SampledSpectrum 171

Sampler::Get1D() 470

SampleT_maj() 859

ShapeIntersection::tHit 266

SimpleVolPathIntegrator 868

VolPathIntegrator::maxDepth
877

880 L I G H T T R A N S P O R T I I : V O L U M E R E N D E R I N G CHAPTER 14

The form of the fragment for sampling the medium is similar as well: tMax is set using the ray
intersection t , if available, and an RNG is prepared before medium sampling proceeds. If the
path is terminated or undergoes real scattering in the medium, then no further work is done
to sample surface scattering at a ray intersection point.

〈Sample the participating medium〉 ≡ 879

bool scattered = false, terminated = false;
Float tMax = si ? si->tHit : Infinity;
〈Initialize RNG for sampling the majorant transmittance 870〉
SampledSpectrum T_maj = SampleT_maj(ray, tMax, sampler.Get1D(), rng, lambda,

[&](Point3f p, MediumProperties mp, SampledSpectrum sigma_maj,
SampledSpectrum T_maj) {
〈Handle medium scattering event for ray 880〉

});
〈Handle terminated, scattered, and unscattered medium rays 883〉

Given a sampled point p′ in the medium, the lambda function’s task is to evaluate the Ln
source function, taking care of the second case of Equation (14.7).

〈Handle medium scattering event for ray〉 ≡ 880

〈Add emission from medium scattering event 880〉
〈Compute medium event probabilities for interaction 870〉
〈Sample medium scattering event type and update path 881〉

A small difference from the SimpleVolPathIntegrator is that volumetric emission is added
at every point that is sampled in the medium rather than only when the absorption case
is sampled. There is no reason not to do so, since emission is already available via the
MediumProperties passed to the lambda function.

〈Add emission from medium scattering event〉 ≡ 880

if (depth < maxDepth && mp.Le) {
〈Compute β ′ at new path vertex 880〉
〈Compute rescaled path probability for absorption at path vertex 881〉
〈Update L for medium emission 881〉

}

In the following, we will sometimes use the notation [p̄n + p′] to denote the path p̄n with the
vertex p′ appended to it. Thus, for example, p̄n = [p̄n−1 + pn]. The estimator that gives the
contribution for volumetric emission at p′ is then

β([p̄n + p′]) σa(p′) Le(p′ → pn). (14.28)

beta holds β(p̄n), so we can incrementally compute β([p̄n + p′]) by

β([p̄n + p′]) =
β(p̄n) Tmaj(pn → p′)

pe(p′) pmaj(p′|pn, ω)
.

From Section 14.1.5, we know that pmaj(pi+1|pi, ω) = σmaje
−σmajt . Because we are always

sampling absorption (at least as far as including emission goes), pe is 1 here.

〈Compute β ′ at new path vertex〉 ≡ 880

Float pdf = sigma_maj[0] * T_maj[0];
SampledSpectrum betap = beta * T_maj / pdf;

Even though this is the only sampling technique for volumetric emission, different wave-
lengths may sample this vertex with different probabilities, so it is worthwhile to apply MIS

Float 23

MediumProperties 718

MediumProperties::Le 718

MediumProperties::sigma_a
718

RNG::Uniform() 1055

SampleDiscrete() 70

SampledSpectrum 171

SampledSpectrum::Average()
172

SECTION 14.2 V O L U M E S C A T T E R I N G I N T E G R A T O R S 881

over the wavelengths’ probabilities. With r_u storing the rescaled unidirectional probabili-
ties up to the previous path vertex, the rescaled path probabilities for sampling the emissive
vertex, r_e, can be found by multiplying r_u by the per-wavelength pmaj probabilities and
dividing by the probability for the wavelength that was used for sampling p′, which is already
available in pdf. (Note that in monochromatic media, these ratios are all 1.)

〈Compute rescaled path probability for absorption at path vertex〉 ≡ 880

SampledSpectrum r_e = r_u * sigma_maj * T_maj / pdf;

Here we have a single-sample MIS estimator with balance heuristic weights given by

we([p̄n + p′]) = 1
1
m

∑m
i re,λi

([p̄n + p′])
. (14.29)

The absorption coefficient and emitted radiance for evaluating Equation (14.28) are available
in MediumProperties and the SampledSpectrum::Average() method conveniently computes
the average of rescaled probabilities in the denominator of Equation (14.29).

〈Update L for medium emission〉 ≡ 880

if (r_e)
L += betap * mp.sigma_a * mp.Le / r_e.Average();

Briefly returning to the initialization of betap and r_e in the previous fragments: it may seem
tempting to cancel out the T_maj factors from them, but note how the final estimator does
not perform a component-wise division of these two quantities but instead divides by the
average of the rescaled probabilities when computing the MIS weight. Thus, performing such
cancellations would lead to incorrect results.3

After emission is handled, the next step is to determine which term of Ln to evaluate; this
follows the same approach as in the SimpleVolPathIntegrator.

〈Sample medium scattering event type and update path〉 ≡ 880

Float um = rng.Uniform<Float>();
int mode = SampleDiscrete({pAbsorb, pScatter, pNull}, um);
if (mode == 0) {

〈Handle absorption along ray path 881〉
} else if (mode == 1) {

〈Handle scattering along ray path 882〉
} else {

〈Handle null scattering along ray path 883〉
}

As before, the ray path is terminated in the event of absorption. Since any volumetric emis-
sion at the sampled point has already been added, there is nothing to do but handle the details
associated with ending the path.

〈Handle absorption along ray path〉 ≡ 881

terminated = true;
return false;

For a real-scattering event, a shadow ray is traced to a light to sample direct lighting, and the
path state is updated to account for the new ray. A false value returned from the lambda
function prevents further sample generation along the current ray.

3 This misconception periodically played a role in our initial development of this integrator.

Float 23

MediumInteraction 141

MediumInteraction::phase 141

MediumProperties::phase 718

MediumProperties::sigma_s
718

PhaseFunction::Sample_p()
711

PhaseFunctionSample 711

PhaseFunctionSample::pdf 711

Point2f 92

Ray::d 95

Ray::medium 95

Ray::time 95

Sampler::Get2D() 470

VolPathIntegrator::SampleLd()
886

882 L I G H T T R A N S P O R T I I : V O L U M E R E N D E R I N G CHAPTER 14

〈Handle scattering along ray path〉 ≡ 881

〈Stop path sampling if maximum depth has been reached 871〉
〈Update beta and r_u for real-scattering event 882〉
if (beta && r_u) {

〈Sample direct lighting at volume-scattering event 882〉
〈Sample new direction at real-scattering event 882〉

}
return false;

The PDF for real scattering at this vertex is the product of the PDF for sampling its distance
along the ray, σmaj e−σmajt , and the probability for sampling real scattering, σs(p′)/σmaj. The
σmaj values cancel.

Given the PDF value, beta can be updated to include Tmaj along the segment up to the new
vertex divided by the PDF. The rescaled probabilities are computed in the same way as the
path sampling PDF before being divided by it, following Equation (14.26). The rescaled light
path probabilities will be set shortly, after a new ray direction is sampled.

〈Update beta and r_u for real-scattering event〉 ≡ 882

Float pdf = T_maj[0] * mp.sigma_s[0];
beta *= T_maj * mp.sigma_s / pdf;
r_u *= T_maj * mp.sigma_s / pdf;

Direct lighting is handled by the SampleLd() method, which we will defer until later in this
section.

〈Sample direct lighting at volume-scattering event〉 ≡ 882

MediumInteraction intr(p, -ray.d, ray.time, ray.medium, mp.phase);
L += SampleLd(intr, nullptr, lambda, sampler, beta, r_u);

Sampling the phase function gives a new direction at the scattering event.

〈Sample new direction at real-scattering event〉 ≡ 882

Point2f u = sampler.Get2D();
pstd::optional<PhaseFunctionSample> ps = intr.phase.Sample_p(-ray.d, u);
if (!ps || ps->pdf == 0)

terminated = true;
else {

〈Update ray path state for indirect volume scattering 883〉
}

There is a bit of bookkeeping to take care of after a real-scattering event. We can now
incorporate the phase function value into beta, which completes the contribution of f̂ from
Equation (14.12). Because both unidirectional path sampling and light path sampling use the
same set of sampling operations up to a real-scattering vertex, an initial value for the rescaled
light path sampling probabilities r_l comes from the value of the rescaled unidirectional
probabilities before scattering. It is divided by the directional PDF from pu,λ1

for this vertex
here. The associated directional PDF for light sampling at this vertex will be incorporated
into r_l later. There is no need to update r_u here, since the scattering direction’s probability
is the same for all wavelengths and so the update factor would always be 1.

At this point, the integrator also updates various variables that record the scattering history
and updates the current ray.

Float 23

LightSampleContext 741

MediumProperties::sigma_a
718

MediumProperties::sigma_s
718

PhaseFunctionSample::p 711

PhaseFunctionSample::pdf 711

PhaseFunctionSample::wi 711

Ray::d 95

Ray::o 95

SampledSpectrum 171

SECTION 14.2 V O L U M E S C A T T E R I N G I N T E G R A T O R S 883

〈Update ray path state for indirect volume scattering〉 ≡ 882

beta *= ps->p / ps->pdf;
r_l = r_u / ps->pdf;
prevIntrContext = LightSampleContext(intr);
scattered = true;
ray.o = p;
ray.d = ps->wi;
specularBounce = false;
anyNonSpecularBounces = true;

If the ray intersects a light source, the LightSampleContext from the previous path vertex
will be needed to compute MIS weights; prevIntrContext is updated to store it after each
scattering event, whether in a medium or on a surface.

〈Declare state variables for volumetric path sampling〉 +≡ 878

LightSampleContext prevIntrContext;

If null scattering is selected, the updates to beta and the rescaled path sampling probabilities
follow the same form as we have seen previously: the former is given by Equation (14.11)
and the latter with a pe = σn/σmaj factor where, as with real scattering, the σmaj cancels with
a corresponding factor from the pmaj probability (Section 14.1.5).

In this case, we also must update the rescaled path probabilities for sampling this path vertex
via light path sampling, which samples path vertices according to pmaj.

This fragment concludes the implementation of the lambda function that is passed to the
SampleT_maj() function.

〈Handle null scattering along ray path〉 ≡ 881

SampledSpectrum sigma_n = ClampZero(sigma_maj - mp.sigma_a - mp.sigma_s);
Float pdf = T_maj[0] * sigma_n[0];
beta *= T_maj * sigma_n / pdf;
if (pdf == 0) beta = SampledSpectrum(0.f);
r_u *= T_maj * sigma_n / pdf;
r_l *= T_maj * sigma_maj / pdf;
return beta && r_u;

Returning to the Li() method immediately after the SampleT_maj() call, if the path termi-
nated due to absorption, it is only here that we can break out and return the radiance estimate
to the caller of the Li() method. Further, it is only here that we can jump back to the start of
the while loop for rays that were scattered in the medium.

〈Handle terminated, scattered, and unscattered medium rays〉 ≡ 880

if (terminated || !beta || !r_u) return L;
if (scattered) continue;

With those cases taken care of, we are left with rays that either underwent no scattering events
in the medium or only underwent null scattering. For those cases, both the path throughput
weight β and the rescaled path probabilities must be updated. β takes a factor of Tmaj to
account for the transmittance from either the last null-scattering event or the ray’s origin
to the ray’s tmax position. The rescaled unidirectional and light sampling probabilities also
take the same Tmaj, which corresponds to the final factors outside of the parenthesis in the
definitions of pnull and pratio.

BSDF::Flags() 544

BSDF::Sample_f() 545

BSDFSample 541

BxDFFlags::IsNonSpecular()
539

Float 23

Interaction::wo 137

LightSampleContext 741

PathIntegrator 833

Sampler::Get1D() 470

Sampler::Get2D() 470

Vector3f 86

VolPathIntegrator::maxDepth
877

VolPathIntegrator::SampleLd()
886

884 L I G H T T R A N S P O R T I I : V O L U M E R E N D E R I N G CHAPTER 14

〈Handle terminated, scattered, and unscattered medium rays〉 +≡ 880

beta *= T_maj / T_maj[0];
r_u *= T_maj / T_maj[0];
r_l *= T_maj / T_maj[0];

There is much more to do for rays that have either escaped the scene or have intersected
a surface without medium scattering or absorption. We will defer discussion of the first
following fragment, 〈Add emitted light at volume path vertex or from the environment〉, until
later in the section when we discuss the direct lighting calculation. A few of the others are
implemented reusing fragments from earlier integrators.

〈Handle surviving unscattered rays〉 ≡ 879

〈Add emitted light at volume path vertex or from the environment 890〉
〈Get BSDF and skip over medium boundaries 828〉
〈Initialize visibleSurf at first intersection 834〉
〈Terminate path if maximum depth reached 884〉
〈Possibly regularize the BSDF 842〉
〈Sample illumination from lights to find attenuated path contribution 884〉
〈Sample BSDF to get new volumetric path direction 884〉
〈Account for attenuated subsurface scattering, if applicable〉
〈Possibly terminate volumetric path with Russian roulette 885〉

As with the PathIntegrator, path termination due to reaching the maximum depth only
occurs after accounting for illumination from any emissive surfaces that are intersected.

〈Terminate path if maximum depth reached〉 ≡ 884

if (depth++ >= maxDepth)
return L;

Sampling the light source at a surface intersection is handled by the same SampleLd() method
that is called for real-scattering vertices in the medium. As with medium scattering, the
LightSampleContext corresponding to this scattering event is recorded for possible later use
in MIS weight calculations.

〈Sample illumination from lights to find attenuated path contribution〉 ≡ 884

if (IsNonSpecular(bsdf.Flags()))
L += SampleLd(isect, &bsdf, lambda, sampler, beta, r_u);

prevIntrContext = LightSampleContext(isect);

The logic for sampling scattering at a surface is very similar to the corresponding logic in the
PathIntegrator.

〈Sample BSDF to get new volumetric path direction〉 ≡ 884

Vector3f wo = isect.wo;
Float u = sampler.Get1D();
pstd::optional<BSDFSample> bs = bsdf.Sample_f(wo, u, sampler.Get2D());
if (!bs) break;
〈Update beta and rescaled path probabilities for BSDF scattering 885〉
〈Update volumetric integrator path state after surface scattering 885〉

Given a BSDF sample, β is first multiplied by the value of the BSDF, which takes care of f̂

from Equation (14.12). This is also a good time to incorporate the cosine factor from the Cp
factor of the generalized geometric term, Equation (14.13).

AbsDot() 90

BSDF::PDF() 546

BSDFSample 541

BSDFSample::eta 541

BSDFSample::f 541

BSDFSample::flags 541

BSDFSample::IsSpecular() 541

BSDFSample::IsTransmission()
541

BSDFSample::pdf 541

BSDFSample::pdfIsProportional
541

BSDFSample::wi 541

Float 23

LayeredBxDF 895

SampledSpectrum 171

SampledSpectrum::Average()
172

SampledSpectrum::
MaxComponentValue()
172

Sampler::Get1D() 470

Sqr() 1034

SurfaceInteraction::
shading::n
139

SurfaceInteraction::
SpawnRay()
645

VolPathIntegrator 877

SECTION 14.2 V O L U M E S C A T T E R I N G I N T E G R A T O R S 885

Updates to the rescaled path probabilities follow how they were done for medium scattering:
first, there is no need to update r_u since the probabilities are the same over all wavelengths.
The rescaled light path sampling probabilities are also initialized from r_u, here also with only
the 1/pu,λ1

factor included. The other factors in r_l will only be computed and included if
the ray intersects an emitter; otherwise r_l is unused.

One nit in updating r_l is that the BSDF and PDF value returned in the BSDFSample may only
be correct up to a (common) scale factor. This case comes up with sampling techniques like
the random walk used by the LayeredBxDF that is described in Section 14.3.2. In that case, a
call to BSDF::PDF() gives an independent value for the PDF that can be used.

〈Update beta and rescaled path probabilities for BSDF scattering〉 ≡ 884

beta *= bs->f * AbsDot(bs->wi, isect.shading.n) / bs->pdf;
if (bs->pdfIsProportional)

r_l = r_u / bsdf.PDF(wo, bs->wi);
else

r_l = r_u / bs->pdf;

A few additional state variables must be updated after surface scattering, as well.

〈Update volumetric integrator path state after surface scattering〉 ≡ 884

specularBounce = bs->IsSpecular();
anyNonSpecularBounces |= !bs->IsSpecular();
if (bs->IsTransmission())

etaScale *= Sqr(bs->eta);
ray = isect.SpawnRay(ray, bsdf, bs->wi, bs->flags, bs->eta);

Russian roulette follows the same general approach as before, though we scale beta by the
accumulated effect of radiance scaling for transmission that is encoded in etaScale and use
the balance heuristic over wavelengths. If the Russian roulette test passes, beta is updated
with a factor that accounts for the survival probability, 1 - q.

〈Possibly terminate volumetric path with Russian roulette〉 ≡ 884

SampledSpectrum rrBeta = beta * etaScale / r_u.Average();
Float uRR = sampler.Get1D();
if (rrBeta.MaxComponentValue() < 1 && depth > 1) {

Float q = std::max<Float>(0, 1 - rrBeta.MaxComponentValue());
if (uRR < q) break;
beta /= 1 - q;

}

Estimating Direct Illumination
All that remains in the VolPathIntegrator’s implementation is direct illumination. We will
start with the SampleLd() method, which is called to estimate scattered radiance due to direct
illumination by sampling a light source, both at scattering points in media and on surfaces.
(It is responsible for computing the second term of Equation (14.24).) The purpose of most
of its parameters should be evident. The last, r_p, gives the rescaled path probabilities up to
the vertex intr. (A separate variable named r_u will be used in the function’s implementation,
so a new name is needed here.)

BSDF 544

BSDF::operator bool() 544

Float 23

Interaction 136

Interaction::AsSurface() 138

Light 740

LightSampleContext 741

LightSampler::Sample() 781

PathIntegrator 833

PathIntegrator::SampleLd()
835

Point2f 92

Ray::d 95

SampledLight 782

SampledLight::light 782

SampledSpectrum 171

SampledWavelengths 173

Sampler 469

Sampler::Get1D() 470

Sampler::Get2D() 470

SurfaceInteraction 138

Vector3f 86

886 L I G H T T R A N S P O R T I I : V O L U M E R E N D E R I N G CHAPTER 14

〈VolPathIntegrator Method Definitions〉 +≡
SampledSpectrum VolPathIntegrator::SampleLd(const Interaction &intr,

const BSDF *bsdf, SampledWavelengths &lambda, Sampler sampler,
SampledSpectrum beta, SampledSpectrum r_p) const {

〈Estimate light-sampled direct illumination at intr 886〉
}

The overall structure of this method’s implementation is similar to the PathIntegrator’s
SampleLd() method: a light source and a point on it are sampled, the vertex’s scattering
function is evaluated, and then the light’s visibility is determined. Here we have the added
complexity of needing to compute the transmittance between the scattering point and the
point on the light rather than finding a binary visibility factor, as well as the need to compute
spectral path sampling weights for MIS.

〈Estimate light-sampled direct illumination at intr〉 ≡ 886

〈Initialize LightSampleContext for volumetric light sampling 886〉
〈Sample a light source using lightSampler 886〉
〈Sample a point on the light source 887〉
〈Evaluate BSDF or phase function for light sample direction 887〉
〈Declare path state variables for ray to light source 887〉
while (lightRay.d != Vector3f(0, 0, 0)) {

〈Trace ray through media to estimate transmittance 888〉
}
〈Return path contribution function estimate for direct lighting 890〉

Because it is called for both surface and volumetric scattering path vertices, SampleLd() takes
a plain Interaction to represent the scattering point. Some extra care is therefore needed
when initializing the LightSampleContext: if scattering is from a surface, it is important to
interpret that interaction as the SurfaceInteraction that it is so that the shading normal
is included in the LightSampleContext. This case also presents an opportunity, as was done
in the PathIntegrator, to shift the light sampling point to avoid incorrectly sampling self-
illumination from area lights.

〈Initialize LightSampleContext for volumetric light sampling〉 ≡ 886

LightSampleContext ctx;
if (bsdf) {

ctx = LightSampleContext(intr.AsSurface());
〈Try to nudge the light sampling position to correct side of the surface 836〉

}
else ctx = LightSampleContext(intr);

Sampling a point on the light follows in the usual way. Note that the implementation is
careful to consume the two sample dimensions from the Sampler regardless of whether
sampling a light was successful, in order to keep the association of sampler dimensions with
integration dimensions fixed across pixel samples.

〈Sample a light source using lightSampler〉 ≡ 886

Float u = sampler.Get1D();
pstd::optional<SampledLight> sampledLight = lightSampler.Sample(ctx, u);
Point2f uLight = sampler.Get2D();
if (!sampledLight)

return SampledSpectrum(0.f);
Light light = sampledLight->light;

AbsDot() 90

BSDF::f() 545

BSDF::operator bool() 544

BSDF::PDF() 546

Float 23

Hash() 1042

Interaction::AsMedium() 137

Interaction::AsSurface() 138

Interaction::SpawnRayTo()
383

Interaction::wo 137

Light::SampleLi() 741

LightLiSample 743

LightLiSample::L 743

LightLiSample::pdf 743

LightLiSample::pLight 743

LightLiSample::wi 743

MediumInteraction::phase 141

PathIntegrator::SampleLd()
835

PhaseFunction 710

PhaseFunction::p() 710

PhaseFunction::PDF() 711

Ray 95

Ray::d 95

Ray::o 95

RNG 1054

SampledLight::p 782

SampledSpectrum 171

SurfaceInteraction::
shading::n
139

Vector3f 86

SECTION 14.2 V O L U M E S C A T T E R I N G I N T E G R A T O R S 887

The light samples a direction from the reference point in the usual manner. The true value
passed for the allowIncompletePDF parameter of Light::SampleLi() indicates the use of MIS
here.

〈Sample a point on the light source〉 ≡ 886

pstd::optional<LightLiSample> ls =
light.SampleLi(ctx, uLight, lambda, true);

if (!ls || !ls->L || ls->pdf == 0)
return SampledSpectrum(0.f);

Float lightPDF = sampledLight->p * ls->pdf;

As in PathIntegrator::SampleLd(), it is worthwhile to evaluate the BSDF or phase function
before tracing the shadow ray: if it turns out to be zero-valued for the direction to the light
source, then it is possible to exit early and perform no further work.

〈Evaluate BSDF or phase function for light sample direction〉 ≡ 886

Float scatterPDF;
SampledSpectrum f_hat;
Vector3f wo = intr.wo, wi = ls->wi;
if (bsdf) {

〈Update f_hat and scatterPDF accounting for the BSDF 887〉
} else {

〈Update f_hat and scatterPDF accounting for the phase function 887〉
}
if (!f_hat) return SampledSpectrum(0.f);

The f_hat variable that holds the value of the scattering function is slightly misnamed: it
also includes the cosine factor for scattering from surfaces and does not include the σs for
scattering from participating media, as that has already been included in the provided value
of beta.

〈Update f_hat and scatterPDF accounting for the BSDF〉 ≡ 887

f_hat = bsdf->f(wo, wi) * AbsDot(wi, intr.AsSurface().shading.n);
scatterPDF = bsdf->PDF(wo, wi);

〈Update f_hat and scatterPDF accounting for the phase function〉 ≡ 887

PhaseFunction phase = intr.AsMedium().phase;
f_hat = SampledSpectrum(phase.p(wo, wi));
scatterPDF = phase.PDF(wo, wi);

A handful of variables keep track of some useful quantities for the ray-tracing and medium
sampling operations that are performed to compute transmittance. T_ray holds the trans-
mittance along the ray and r_u and r_l respectively hold the rescaled path probabilities for
unidirectional sampling and light sampling, though only along the ray. Maintaining these
values independently of the full path contribution and PDFs facilitates the use of Russian
roulette in the transmittance computation.

〈Declare path state variables for ray to light source〉 ≡ 886

Ray lightRay = intr.SpawnRayTo(ls->pLight);
SampledSpectrum T_ray(1.f), r_l(1.f), r_u(1.f);
RNG rng(Hash(lightRay.o), Hash(lightRay.d));

SampleLd() successively intersects the shadow ray with the scene geometry, returning zero
contribution if an opaque surface is found and otherwise sampling the medium to estimate

Float 23

Integrator::Intersect() 23

Material 674

MediumProperties 718

Point3f 92

Ray::medium 95

RNG::Uniform<Float>() 1056

SampledSpectrum 171

SampleT_maj() 859

ShadowEpsilon 383

ShapeIntersection 266

ShapeIntersection::intr 266

ShapeIntersection::tHit 266

SurfaceInteraction::material
398

888 L I G H T T R A N S P O R T I I : V O L U M E R E N D E R I N G CHAPTER 14

the transmittance up to the intersection. For intersections that represent transitions between
different media, this process repeats until the ray reaches the light source.

For some scenes, it could be more efficient to instead first check that there are no intersections
with opaque surfaces before sampling the media to compute the transmittance. With the
current implementation, it is possible to do wasted work estimating transmittance before
finding an opaque surface farther along the ray.

〈Trace ray through media to estimate transmittance〉 ≡ 886

pstd::optional<ShapeIntersection> si = Intersect(lightRay, 1-ShadowEpsilon);
〈Handle opaque surface along ray’s path 888〉
〈Update transmittance for current ray segment 888〉
〈Generate next ray segment or return final transmittance 889〉

If an intersection is found with a surface that has a non-nullptr Material, the visibility term
is zero and the method can return immediately.

〈Handle opaque surface along ray’s path〉 ≡ 888

if (si && si->intr.material)
return SampledSpectrum(0.f);

Otherwise, if participating media is present, SampleT_maj() is called to sample it along the
ray up to whichever is closer—the surface intersection or the sampled point on the light.

〈Update transmittance for current ray segment〉 ≡ 888

if (lightRay.medium) {
Float tMax = si ? si->tHit : (1 - ShadowEpsilon);
Float u = rng.Uniform<Float>();
SampledSpectrum T_maj = SampleT_maj(lightRay, tMax, u, rng, lambda,

[&](Point3f p, MediumProperties mp, SampledSpectrum sigma_maj,
SampledSpectrum T_maj) {
〈Update ray transmittance estimate at sampled point 888〉

});
〈Update transmittance estimate for final segment 889〉

}

For each sampled point in the medium, the transmittance and rescaled path probabilities are
updated before Russian roulette is considered.

〈Update ray transmittance estimate at sampled point〉 ≡ 888

〈Update T_ray and PDFs using ratio-tracking estimator 889〉
〈Possibly terminate transmittance computation using Russian roulette 889〉
return true;

In the context of the equation of transfer, using ratio tracking to compute transmittance
can be seen as sampling distances along the ray according to the majorant transmittance
and then only including the null-scattering component of the source function Ln to cor-
rect any underestimate of transmittance from Tmaj. Because only null-scattering vertices are
sampled along transmittance rays, the logic for updating the transmittance and rescaled path
probabilities at each vertex exactly follows that in the 〈Handle null scattering along ray path〉
fragment.

Float 23

Interaction::SpawnRayTo()
383

LightLiSample::pLight 743

MediumProperties::sigma_a
718

MediumProperties::sigma_s
718

RNG::Uniform<Float>() 1056

SampledSpectrum 171

SampledSpectrum::Average()
172

SampledSpectrum::ClampZero()
172

SampledSpectrum::
MaxComponentValue()
172

ShapeIntersection::intr 266

SECTION 14.2 V O L U M E S C A T T E R I N G I N T E G R A T O R S 889

〈Update T_ray and PDFs using ratio-tracking estimator〉 ≡ 888

SampledSpectrum sigma_n = ClampZero(sigma_maj - mp.sigma_a - mp.sigma_s);
Float pdf = T_maj[0] * sigma_maj[0];
T_ray *= T_maj * sigma_n / pdf;
r_l *= T_maj * sigma_maj / pdf;
r_u *= T_maj * sigma_n / pdf;

Russian roulette is used to randomly terminate rays with low transmittance. A natural choice
might seem to be setting the survival probability equal to the transmittance—along the
lines of how Russian roulette is used for terminating ray paths from the camera according
to β. However, doing so would effectively transform ratio tracking to delta tracking, with
the transmittance always equal to zero or one. The implementation therefore applies a less
aggressive termination probability, only to highly attenuated rays.

In the computation of the transmittance value used for the Russian roulette test, note that an
MIS weight that accounts for both the unidirectional and light sampling strategies is used,
along the lines of Equation (14.27).

〈Possibly terminate transmittance computation using Russian roulette〉 ≡ 888

SampledSpectrum Tr = T_ray / (r_l + r_u).Average();
if (Tr.MaxComponentValue() < 0.05f) {

Float q = 0.75f;
if (rng.Uniform<Float>() < q)

T_ray = SampledSpectrum(0.);
else

T_ray /= 1 - q;
}

After the SampleT_maj() call returns, the transmittance and rescaled path probabilities all
must be multiplied by the T_maj returned from SampleT_maj() for the final ray segment. (See
the discussion for the earlier 〈Handle terminated, scattered, and unscattered medium rays〉
fragment for why each is updated as it is.)

〈Update transmittance estimate for final segment〉 ≡ 888

T_ray *= T_maj / T_maj[0];
r_l *= T_maj / T_maj[0];
r_u *= T_maj / T_maj[0];

If the transmittance is zero (e.g., due to Russian roulette termination), it is possible to
return immediately. Furthermore, if there is no surface intersection, then there is no further
medium sampling to be done and we can move on to computing the scattered radiance from
the light. Alternatively, if there is an intersection, it must be with a surface that represents the
boundary between two media; the SpawnRayTo() method call returns the continuation ray on
the other side of the surface, with its medium member variable set appropriately.

〈Generate next ray segment or return final transmittance〉 ≡ 888

if (!T_ray) return SampledSpectrum(0.f);
if (!si) break;
lightRay = si->intr.SpawnRayTo(ls->pLight);

After the while loop terminates, we can compute the final rescaled path probabilities, com-
pute MIS weights, and return the final estimate of the path contribution function for the light
sample.

Integrator::infiniteLights 23

IsDeltaLight() 741

Light::Le() 743

Light::Type() 740

LightLiSample::L 743

Ray::d 95

SampledSpectrum 171

SampledSpectrum::Average()
172

ShapeIntersection::intr 266

SurfaceInteraction 138

SurfaceInteraction::Le() 762

890 L I G H T T R A N S P O R T I I : V O L U M E R E N D E R I N G CHAPTER 14

The r_p variable passed in to SampleLd() stores the rescaled path probabilities for unidirec-
tional sampling of the path up to the vertex where direct lighting is being computed—though
here, r_u and r_l have been rescaled using the light path sampling probability, since that is
how the vertices were sampled along the shadow ray. However, recall from Equations (14.21)
and (14.23) that pu,λ1

(p̄n) = pl,λ1
(p̄n) for the path up to the scattering vertex. Thus, r_p can

be interpreted as being rescaled using 1/pl,λ1
. This allows multiplying r_l and r_u by r_p to

compute final rescaled path probabilities.

If the light source is described by a delta distribution, only the light sampling technique is
applicable; there is no chance of intersecting such a light via sampling the BSDF or phase
function. In that case, we still apply MIS using all the wavelengths’ individual path PDFs in
order to reduce variance in chromatic media.

For area lights, we are able to use both light source and the scattering function samples, giving
two primary sampling strategies, each of which has a separate weight for each wavelength.

〈Return path contribution function estimate for direct lighting〉 ≡ 886

r_l *= r_p * lightPDF;
r_u *= r_p * scatterPDF;
if (IsDeltaLight(light.Type()))

return beta * f_hat * T_ray * ls->L / r_l.Average();
else

return beta * f_hat * T_ray * ls->L / (r_l + r_u).Average();

With SampleLd() implemented, we will return to the fragments in the Li() method that
handle the cases where a ray escapes from the scene and possibly finds illumination from
infinite area lights, as well as where a ray intersects an emissive surface. These handle the first
term in the direct lighting MIS estimator, Equation (14.24).

〈Add emitted light at volume path vertex or from the environment〉 ≡ 884

if (!si) {
〈Accumulate contributions from infinite light sources 890〉
break;

}
SurfaceInteraction &isect = si->intr;
if (SampledSpectrum Le = isect.Le(-ray.d, lambda); Le) {

〈Add contribution of emission from intersected surface〉
}

As with the PathIntegrator, if the previous scattering event was due to a delta-distribution
scattering function, then sampling the light is not a useful strategy. In that case, the MIS
weight is only based on the per-wavelength PDFs for the unidirectional sampling strategy.

〈Accumulate contributions from infinite light sources〉 ≡ 890

for (const auto &light : infiniteLights) {
if (SampledSpectrum Le = light.Le(ray, lambda); Le) {

if (depth == 0 || specularBounce)
L += beta * Le / r_u.Average();

else {
〈Add infinite light contribution using both PDFs with MIS 891〉

}
}

}

Float 23

Light::PDF_Li() 743

LightSampler::PMF() 782

Ray::d 95

SampledSpectrum::Average()
172

ThinDielectricBxDF 567

VolPathIntegrator::
lightSampler
877

SECTION 14.3 S C A T T E R I N G F R O M L A Y E R E D M A T E R I A L S 891

Otherwise, the MIS weight should account for both sampling techniques. At this point, r_l
has everything but the probabilities for sampling the light itself. (Recall that we deferred that
when initializing r_l at the real-scattering vertex earlier.) After incorporating that factor, all
that is left is to compute the final weight, accounting for both sampling strategies.

〈Add infinite light contribution using both PDFs with MIS〉 ≡ 890

Float lightPDF = lightSampler.PMF(prevIntrContext, light) *
light.PDF_Li(prevIntrContext, ray.d, true);

r_l *= lightPDF;
L += beta * Le / (r_u + r_l).Average();

The work done in the 〈Add contribution of emission from intersected surface〉 fragment is very
similar to that done for infinite lights, so it is not included here.

14.3 SCATTERING FROM LAYERED MATERIALS

In addition to describing scattering from larger-scale volumetric media like clouds or smoke,
the equation of transfer can be used to model scattering at much smaller scales. The Layered
BxDF applies it to this task, implementing a reflection model that accounts for scattering from
two interfaces that are represented by surfaces with independent BSDFs and with a medium
between them. Monte Carlo can be applied to estimating the integrals that describe the
aggregate scattering behavior, in a way similar to what is done in light transport algorithms.
This approach is effectively the generalization of the technique used to sum up aggregate
scattering from a pair of perfectly smooth dielectric interfaces in the ThinDielectricBxDF in
Section 9.5.1.

Modeling surface reflectance as a composition of layers makes it possible to describe a variety
of surfaces that are not well modeled by the BSDFs presented in Chapter 9. For example,
automobile paint generally has a smooth reflective “clear coat” layer applied on top of it; the
overall appearance of the paint is determined by the combination of light scattering from the
layer’s interface as well as light scattering from the paint. (See Figure 14.11.) Tarnished metal
can be modeled by an underlying metal BRDF with a thin scattering medium on top of it; it
is again the aggregate result of a variety of light scattering paths that determines the overall
appearance of the surface.

Figure 14.11: Scattering from Layered Surfaces. Surface reflection can be modeled with a series of
layers, where each interface between media is represented with a BSDF and where the media between
layers may itself both absorb and scatter light. The aggregate scattering from such a configuration can be
determined by finding solutions to the equation of transfer.

BxDF 538

892 L I G H T T R A N S P O R T I I : V O L U M E R E N D E R I N G CHAPTER 14

L(z, ω)

Figure 14.12: Setting for the One-Dimensional Equation of Transfer. If the properties of the medium
only vary in one dimension and if the incident illumination is uniform over its boundary, then the equilibrium
radiance distribution varies only with depth z and direction ω and a 1D specialization of the equation of
transfer can be used.

z θ
d

Figure 14.13: Transmittance in 1D. The distance between two depths d is given by the z distance
between them divided by the cosine of the ray’s angle with respect to the z axis, θ . The transmittance
follows.

With general layered media, light may exit the surface at a different point than that at which
it entered it. The LayeredBxDF does not model this effect but instead assumes that light enters
and exits at the same point on the surface. (As a BxDF, it is unable to express any other sort
of scattering, anyway.) This is a reasonable approximation if the distance between the two
interfaces is relatively small. This approximation makes it possible to use a simplified 1D
version of the equation of transfer. After deriving this variant, we will show its application to
evaluating and sampling such BSDFs.

14.3.1 THE ONE-DIMENSIONAL EQUATION OF TRANSFER

Given plane-parallel 3D scattering media where the scattering properties are homogeneous
across planes and only vary in depth, and where the incident illumination does not vary
as a function of position over the medium’s planar boundary, the equations that describe
scattering can be written in terms of 1D functions over depth (see Figure 14.12).

In this setting, the various quantities are more conveniently expressed as functions of depth
z rather than of distance t along a ray. For example, if the extinction coefficient is given by
σt(z), then the transmittance between two depths z0 and z1 for a ray with direction ω is

Tr(z0 → z1, ω) = e
−

∫ z1
z0

σt(z
′)/|cos θ | dz′

= e
−

∫ z1
z0

σt(z
′)/|ωz| dz′

.

See Figure 14.13. This definition uses the fact that if a ray with direction ω travels a distance
t , then the change in z is tωz.

LayeredBxDF 895

SECTION 14.3 S C A T T E R I N G F R O M L A Y E R E D M A T E R I A L S 893

Lo(zo, –ω)

Li(z, ω)

Ls(z′, ω)

Figure 14.14: The 1D specialization of the equation of transfer from Equation (14.31) expresses the
incident radiance Li at a depth z as the sum of attenuated radiance Lo from the interface that is visible
along the ray and the transmission-modulated source function Ls integrated over z.

In the case of a homogeneous medium,

Tr(z0 → z1, ω) = e
−σt

∣∣∣ z0−z1
ωz

∣∣∣
. (14.30)

The 1D equation of transfer can be found in a similar fashion. It says that at points inside the
medium the incident radiance at a depth z in direction ω is given by

Li(z, ω) = Tr(z → zi, ω)Lo(zi, −ω) +
∫ zi

z

Tr(z → z′, ω)Ls(z
′, −ω)

|ωz|
dz′, (14.31)

where zi is the depth of the medium interface that the ray from z in direction ω intersects.
(See Figure 14.14.) At boundaries, the incident radiance function is given by Equation (14.31)
for directions ω that point into the medium. For directions that point outside it, incident
radiance is found by integrating illumination from the scene.

The scattering from an interface at a boundary of the medium is given by the incident
radiance modulated by the boundary’s BSDF,

Lo(z, ωo) =
∫

S2
fz(ωo, ω′) Li(z, ω′) |cos θ ′| dω′. (14.32)

If we also assume there is no volumetric emission (as we will do in the LayeredBxDF), the
source function in Equation (14.31) simplifies to

Ls(z, ω) = σs

σt

∫

S2
p(ω′, ω) Li(z, ω′) dω′. (14.33)

The LayeredBxDF further assumes that σt is constant over all wavelengths in the medium,
which means that null scattering is not necessary for sampling distances in the medium. Null
scattering is easily included in the 1D simplification of the equation of transfer if necessary,
though we will not do so here. For similar reasons, we will also not derive its path integral
form in 1D, though it too can be found with suitable simplifications to the approach that was
used in Section 14.1.4. The “Further Reading” section has pointers to more details.

14.3.2 LAYERED BxDF

The equation of transfer describes the equilibrium distribution of radiance, though our
interest here is in evaluating and sampling the BSDF that represents all the scattering from the

BxDF 538

CoatedConductorBxDF 909

CoatedDiffuseBxDF 909

894 L I G H T T R A N S P O R T I I : V O L U M E R E N D E R I N G CHAPTER 14

f (ωo, ωi) Li(ωi)

Figure 14.15: If a medium is illuminated with a virtual light source of the form of Equation (14.34), then
the radiance leaving the surface in the direction ωo is equivalent to the layered surface’s BSDF, f (ωo, ωi).

layered medium. Fortunately, these two things can be connected. If we would like to evaluate
the BSDF for a pair of directions ωo and ωi, then we can define an incident radiance function
from a virtual light source from ωi as

Li(ω) = δ(ω − ωi)

|cos θi|
. (14.34)

If a 1D medium is illuminated by such a light, then the outgoing radiance Lo(ωo) at the
medium’s interface is equivalent to the value of the BSDF, f (ωo, ωi) (see Figure 14.15). One
way to understand why this is so is to consider using such a light with the surface reflection
equation:

Lo(ωo) =
∫

S2
f (ωo, ω) Li(ω) |cos θ | dω =

∫

S2
f (ωo, ω) δ(ω − ωi) dω = f (ωo, ωi).

Thus, integrating the equation of transfer with such a light allows us to evaluate and sample
the corresponding BSDF. However, this means that unlike all the BxDF implementations
from Chapter 9, the values that LayeredBxDF returns from methods like f() and PDF() are
stochastic. This is perfectly fine in the context of all of pbrt’s Monte Carlo–based techniques
and does not affect the correctness of other estimators that use these values; it is purely one
more source of error that can be controlled in a predictable way by increasing the number of
samples.

The LayeredBxDF allows the specification of only two interfaces and a homogeneous partic-
ipating medium between them. Figure 14.16 illustrates the geometric setting. Surfaces with
more layers can be modeled using a LayeredBxDF where one or both of its layers are themselves
LayeredBxDFs. (An exercise at the end of the chapter discusses a more efficient approach for
supporting additional layers.)

The types of BxDFs at both interfaces can be provided as template parameters. While the user
of a LayeredBxDF is free to provide a BxDF for both of these types (in which case pbrt’s regular
dynamic dispatch mechanism will be used), performance is better if they are specific BxDFs
and the compiler can generate a specialized implementation. This approach is used for the
CoatedDiffuseBxDF and the CoatedConductorBxDF that are defined in Section 14.3.3. (The
meaning of the twoSided template parameter will be explained in a few pages, where it is
used.)

BottomBxDF 895

BxDF 538

Float 23

SampledSpectrum 171

TopBxDF 895

SECTION 14.3 S C A T T E R I N G F R O M L A Y E R E D M A T E R I A L S 895

z = 0

z = thickness

Figure 14.16: Geometric Setting for the LayeredBxDF. Scattering is specified by two interfaces with
associated BSDFs where the bottom one is at z = 0 and there is a medium of user-specified thickness
between the two interfaces.

(a) (b) (c)

Figure 14.17: Effect of Varying Medium Thickness with the LayeredBxDF. (a) Dragon with surface reflectance modeled by a smooth
conductor base layer and a dielectric interface above it. (b) With a scattering layer with albedo 0.7 and thickness 0.15 between the interface
and the conductor, the reflection of the conductor is slightly dimmed. (c) With a thicker scattering layer of thickness 0.5, the conductor is
much more attenuated and the overall reflection is more diffuse. (Dragon model courtesy of the Stanford Computer Graphics Laboratory.)

〈LayeredBxDF Definition〉 ≡
template <typename TopBxDF, typename BottomBxDF, bool twoSided>
class LayeredBxDF {

public:
〈LayeredBxDF Public Methods 897〉

private:
〈LayeredBxDF Private Methods 896〉
〈LayeredBxDF Private Members 895〉

};

In addition to BxDFs for the two interfaces, the LayeredBxDF maintains member variables that
describe the medium between them. Rather than have the user specify scattering coefficients,
which can be unintuitive to set manually, it assumes a medium with σt = 1 and leaves it to
the user to specify both the thickness of the medium and its scattering albedo. Figure 14.17
shows the effect of varying the thickness of the medium between a conductor base layer and
a dielectric interface.

〈LayeredBxDF Private Members〉 ≡ 895

TopBxDF top;
BottomBxDF bottom;
Float thickness, g;
SampledSpectrum albedo;

BottomBxDF 895

FastExp() 1036

Float 23

LayeredBxDF::top 895

TopBxDF 895

TopOrBottomBxDF 896

Vector3f 86

896 L I G H T T R A N S P O R T I I : V O L U M E R E N D E R I N G CHAPTER 14

0 z

thickness

Figure 14.18: If the incident ray intersects the layer at z = thickness, then the top layer is the same as is
specified in the LayeredBxDF::top member variable. However, if it intersects the surface from the other
direction at z = 0, we will find it useful to treat the z = 0 layer as the top one and the other as the bottom.
The TopOrBottomBxDF class helps with related bookkeeping.

Two parameters control the Monte Carlo estimates. maxDepth has its usual role in setting a
maximum number of scattering events along a path and nSamples controls the number of
independent samples of the estimators that are averaged. Because additional samples in this
context do not require tracing more rays or evaluating textures, it is more efficient to reduce
any noise due to the stochastic BSDF by increasing this sampling rate rather than increasing
the pixel sampling rate if a higher pixel sampling rate is not otherwise useful.

〈LayeredBxDF Private Members〉 +≡ 895

int maxDepth, nSamples;

We will find it useful to have a helper function Tr() that returns the transmittance for a
ray segment in the medium with given direction w that passes through a distance dz in z,
following Equation (14.30) with σt = 1.

〈LayeredBxDF Private Methods〉 ≡ 895

static Float Tr(Float dz, Vector3f w) {
return FastExp(-std::abs(dz / w.z));

}

Although the LayeredBxDF is specified in terms of top and bottom interfaces, we will find
it useful to exchange the “top” and “bottom” as necessary to have the convention that the
interface that the incident ray intersects is defined to be the top one. (See Figure 14.18.) A
helper class, TopOrBottomBxDF, manages the logic related to these possibilities. As its name
suggests, it stores a pointer to one (and only one) of two BxDF types that are provided as
template parameters.

〈TopOrBottomBxDF Definition〉 ≡
template <typename TopBxDF, typename BottomBxDF>
class TopOrBottomBxDF {

public:
〈TopOrBottomBxDF Public Methods 897〉

private:
const TopBxDF *top = nullptr;
const BottomBxDF *bottom = nullptr;

};

TopOrBottomBxDF provides the implementation of a number of BxDF methods like f(), where
it calls the corresponding method of whichever of the two BxDF types has been provided.

BxDF::f() 539

CoatedDiffuseBxDF 909

LayeredBxDF::nSamples 896

SampledSpectrum 171

TopOrBottomBxDF::bottom 896

TopOrBottomBxDF::top 896

TransportMode 571

Vector3f 86

SECTION 14.3 S C A T T E R I N G F R O M L A Y E R E D M A T E R I A L S 897

In addition to f(), it has similar straightforward Sample_f(), PDF(), and Flags() methods,
which we will not include here.

〈TopOrBottomBxDF Public Methods〉 ≡ 896

SampledSpectrum f(Vector3f wo, Vector3f wi, TransportMode mode) const {
return top ? top->f(wo, wi, mode) : bottom->f(wo, wi, mode);

}

BSDF Evaluation
The BSDF evaluation method f() can now be implemented; it returns an average of the
specified number of independent samples.

〈LayeredBxDF Public Methods〉 ≡ 895

SampledSpectrum f(Vector3f wo, Vector3f wi, TransportMode mode) const {
SampledSpectrum f(0.);
〈Estimate LayeredBxDF value f using random sampling 897〉
return f / nSamples;

}

There is some preliminary computation that is independent of each sample taken to estimate
the BSDF’s value. A few fragments take care of it before the random estimation begins.

〈Estimate LayeredBxDF value f using random sampling〉 ≡ 897

〈Set wi and wi for layered BSDF evaluation 898〉
〈Determine entrance interface for layered BSDF 898〉
〈Determine exit interface and exit z for layered BSDF 898〉
〈Account for reflection at the entrance interface 898〉
〈Declare RNG for layered BSDF evaluation 899〉
for (int s = 0; s < nSamples; ++s) {

〈Sample random walk through layers to estimate BSDF value 899〉
}

With this BSDF, layered materials can be specified as either one- or two-sided via the
twoSided template parameter. If a material is one-sided, then the shape’s surface normal
is used to determine which interface an incident ray enters. If it is in the same hemisphere
as the surface normal, it enters the top interface and otherwise it enters the bottom. This
configuration is especially useful when both interfaces are transmissive and have different
BSDFs.

For two-sided materials, the ray always enters the top interface. This option is useful when
the bottom interface is opaque as is the case with the CoatedDiffuseBxDF, for example. In this
case, it is usually desirable for scattering from both layers to be included, no matter which
side the ray intersects.

One way to handle these options in the f() method would be to negate both directions
and make a recursive call to f() if ωo points below the surface and the material is two-
sided. However, that solution is not a good one for the GPU, where it is likely to introduce
thread divergence. (This topic is discussed in more detail in Section 15.1.1.) Therefore, both
directions are negated at the start of the method and no recursive call is made in this case,
which gives an equivalent result.

BottomBxDF 895

BxDF 538

BxDF::f() 539

Float 23

LayeredBxDF::bottom 895

LayeredBxDF::nSamples 896

LayeredBxDF::thickness 895

LayeredBxDF::top 895

LayeredBxDF::twoSided 895

SameHemisphere() 538

TopBxDF 895

TopOrBottomBxDF 896

898 L I G H T T R A N S P O R T I I : V O L U M E R E N D E R I N G CHAPTER 14

〈Set wi and wi for layered BSDF evaluation〉 ≡ 897

if (twoSided && wo.z < 0) {
wo = -wo;
wi = -wi;

}

The next step is to determine which of the two BxDFs is the one that is encountered first by
the incident ray. The sign of ωo’s z component in the reflection coordinate system gives the
answer.

〈Determine entrance interface for layered BSDF〉 ≡ 897

TopOrBottomBxDF<TopBxDF, BottomBxDF> enterInterface;
bool enteredTop = twoSided || wo.z > 0;
if (enteredTop) enterInterface = ⊤
else enterInterface = ⊥

It is also necessary to determine which interface ωi exits. This is determined both by which
interface ωo enters and by whether ωo and ωi are in the same hemisphere. We end up with an
unusual case where the exclusive-or operator comes in handy. Along the way, the method
also stores which interface is the one that ωi does not exit from. As random paths are sampled
through the layers and medium, the implementation will always choose reflection from this
interface and not transmission, as choosing the latter would end the path without being able
to scatter out in the ωi direction. The same logic then covers determining the z depth at which
the ray path will exit the surface.

〈Determine exit interface and exit z for layered BSDF〉 ≡ 897

TopOrBottomBxDF<TopBxDF, BottomBxDF> exitInterface, nonExitInterface;
if (SameHemisphere(wo, wi) ^ enteredTop) {

exitInterface = ⊥
nonExitInterface = ⊤

} else {
exitInterface = ⊤
nonExitInterface = ⊥

}
Float exitZ = (SameHemisphere(wo, wi) ^ enteredTop) ? 0 : thickness;

If both directions are on the same side of the surface, then part of the BSDF’s value is given
by reflection at the entrance interface. This can be evaluated directly by calling the interface’s
BSDF’s f() method. The resulting value must be scaled by the total number of samples taken
to estimate the BSDF in this method, since the final returned value is divided by nSamples.

〈Account for reflection at the entrance interface〉 ≡ 897

if (SameHemisphere(wo, wi))
f = nSamples * enterInterface.f(wo, wi, mode);

pbrt’s BxDF interface does not include any uniform sample values as parameters to the f()
method; there is no need for them for any of the other BxDFs in the system. In any case, an
unbounded number of uniform random numbers are required for sampling operations when
evaluating layered BSDFs. Therefore, f() initializes an RNG and defines a convenience lambda
function that returns uniform random sample values. This does mean that the benefits of
sampling with well-distributed point sets are not present here; an exercise at the end of the
chapter returns to this issue.

The RNG is seeded carefully: it is important that calls to f() with different directions have
different seeds so that there is no risk of errors due to correlation between the RNGs used for

BasicPBRTOptions::seed 1031

Float 23

GetOptions() 1032

Hash() 1042

LayeredBxDF::maxDepth 896

OneMinusEpsilon 470

RNG 1054

RNG::Uniform<Float>() 1056

SECTION 14.3 S C A T T E R I N G F R O M L A Y E R E D M A T E R I A L S 899

Figure 14.19: The effect of light that scatters between the interface layers is found by integrating the
product of the cosine-weighted BTDF at the entrance interface with the incident radiance from the medium,
Equation (14.35).

multiple samples in a pixel or across nearby pixels. However, we would also like the samples
to be deterministic so that any call to f() with the same two directions always has the same
set of random samples. This sort of reproducibility is important for debugging so that errors
appear consistently across multiple runs of the program. Hashing the two provided directions
along with the system-wide seed addresses all of these concerns.

〈Declare RNG for layered BSDF evaluation〉 ≡ 897

RNG rng(Hash(GetOptions().seed, wo), Hash(wi));
auto r = [&rng]() { return std::min<Float>(rng.Uniform<Float>(),

OneMinusEpsilon); };

In order to find the radiance leaving the interface in the direction ωo, we need to integrate the
product of the cosine-weighted BTDF at the interface with the incident radiance from inside
the medium,

∫

H2
t

ft(ωo, ω′) Li(z, ω′) |cos θ ′| dω′, (14.35)

where H2
t is the hemisphere inside the medium (see Figure 14.19). The implementation uses

the standard Monte Carlo estimator, taking a sample ω′ from the BTDF and then proceeding
to estimate Li.

〈Sample random walk through layers to estimate BSDF value〉 ≡ 897

〈Sample transmission direction through entrance interface 900〉
〈Sample BSDF for virtual light from wi 900〉
〈Declare state for random walk through BSDF layers 901〉
for (int depth = 0; depth < maxDepth; ++depth) {

〈Sample next event for layered BSDF evaluation random walk 901〉
}

Sampling the direction ω′ is a case where it is useful to be able to specify to Sample_f() that
only transmission should be sampled.

BSDFSample 541

BSDFSample::f 541

BSDFSample::pdf 541

BSDFSample::wi 541

BxDF 538

BxDF::Sample_f() 540

BxDFReflTransFlags::
Transmission
540

Float 23

Point2f 92

900 L I G H T T R A N S P O R T I I : V O L U M E R E N D E R I N G CHAPTER 14

Tr
β

Figure 14.20: Illumination Contribution from the Virtual Light Source. At a path vertex, the contribu-
tion of the virtual light source is given by the product of the path throughput weight β that accounts for
previous scattering along the path, the scattering at the vertex, the transmittance Tr to the exit interface,
and the effect of the BTDF at the interface.

〈Sample transmission direction through entrance interface〉 ≡ 899

Float uc = r();
pstd::optional<BSDFSample> wos =

enterInterface.Sample_f(wo, uc, Point2f(r(), r()), mode,
BxDFReflTransFlags::Transmission);

if (!wos || !wos->f || wos->pdf == 0 || wos->wi.z == 0)
continue;

The task now is to compute a Monte Carlo estimate of the 1D equation of transfer, Equa-
tion (14.31). Before discussing how it is sampled, however, we will first consider some details
related to the lighting calculation with the virtual light source. At each vertex of the path, we
will want to compute the incident illumination due to the light. As shown in Figure 14.20,
there are three factors in the light’s contribution: the value of the phase function or interface
BSDF for a direction ω, the transmittance between the vertex and the exit interface, and the
value of the interface’s BTDF for the direction from −ω to ωi.

Each of these three factors could be used for sampling; as before, one may sometimes be
much more effective than the others. The LayeredBxDF implementation uses two of the
three—sampling the phase function or BRDF at the current path vertex (as appropriate) and
sampling the BTDF at the exit interface—and then weights the results using MIS.

There is no reason to repeatedly sample the exit interface BTDF at each path vertex since the
direction ωi is fixed. Therefore, the following fragment samples it once and holds on to the
resulting BSDFSample. Note that the negation of the TransportMode parameter value mode is
taken for the call to Sample_f(), which is important to reflect the fact that this sampling
operation is following the reverse path with respect to sampling in terms of ωo. This is
an important detail so that the underlying BxDF can correctly account for non-symmetric
scattering; see Section 9.5.2.

〈Sample BSDF for virtual light from wi〉 ≡ 899

uc = r();
pstd::optional<BSDFSample> wis =

exitInterface.Sample_f(wi, uc, Point2f(r(), r()), !mode,
BxDFReflTransFlags::Transmission);

if (!wis || !wis->f || wis->pdf == 0 || wis->wi.z == 0)
continue;

AbsCosTheta() 107

BSDFSample::f 541

BSDFSample::pdf 541

BSDFSample::wi 541

Float 23

HGPhaseFunction 713

LayeredBxDF::albedo 895

LayeredBxDF::thickness 895

LayeredBxDF::Tr() 896

PathIntegrator 833

SampledSpectrum 171

SampledSpectrum::
MaxComponentValue()
172

Vector3f 86

VolPathIntegrator 877

SECTION 14.3 S C A T T E R I N G F R O M L A Y E R E D M A T E R I A L S 901

Moving forward to the random walk estimation of the equation of transfer, the implemen-
tation maintains the current path throughput weight beta, the depth z of the last scattering
event, and the ray direction w.

〈Declare state for random walk through BSDF layers〉 ≡ 899

SampledSpectrum beta = wos->f * AbsCosTheta(wos->wi) / wos->pdf;
Float z = enteredTop ? thickness : 0;
Vector3f w = wos->wi;
HGPhaseFunction phase(g);

We can now move to the body of the inner loop over scattering events along the path. After
a Russian roulette test, a distance is sampled along the ray to determine the next path vertex
either within the medium or at whichever interface the ray intersects.

〈Sample next event for layered BSDF evaluation random walk〉 ≡ 899

〈Possibly terminate layered BSDF random walk with Russian roulette 901〉
〈Account for media between layers and possibly scatter 901〉
〈Account for scattering at appropriate interface 903〉

It is worth considering terminating the path as the path throughput weight becomes low,
though here the termination probability is set less aggressively than it was in the Path
Integrator and VolPathIntegrator. This reflects the fact that each bounce here is relatively
inexpensive, so doing more work to improve the accuracy of the estimate is worthwhile.

〈Possibly terminate layered BSDF random walk with Russian roulette〉 ≡ 901

if (depth > 3 && beta.MaxComponentValue() < 0.25f) {
Float q = std::max<Float>(0, 1 - beta.MaxComponentValue());
if (r() < q) break;
beta /= 1 - q;

}

The common case of no scattering in the medium is handled separately since it is much
simpler than the case where volumetric scattering must be considered.

〈Account for media between layers and possibly scatter〉 ≡ 901

if (!albedo) {
〈Advance to next layer boundary and update beta for transmittance 901〉

} else {
〈Sample medium scattering for layered BSDF evaluation 902〉

}

If there is no medium scattering, then only the first term of Equation (14.31) needs to be
evaluated. The path vertices alternate between the two interfaces. Here beta is multiplied
by the transmittance for the ray segment through the medium; the Lo factor is found by
estimating Equation (14.32), which will be handled shortly.

〈Advance to next layer boundary and update beta for transmittance〉 ≡ 901

z = (z == thickness) ? 0 : thickness;
beta *= Tr(thickness, w);

If the medium is scattering, we only sample one of the two terms of the 1D equation of
transfer, choosing between taking a sample inside the medium and scattering at the other
interface. A change in depth *z can be perfectly sampled from the 1D beam transmittance,
Equation (14.30). Since σt = 1, the PDF is

p(*z) = 1

|ωz|
e
− *z

|ωz| .

BSDFSample::f 541

BSDFSample::pdf 541

BSDFSample::wi 541

BxDF::Flags() 538

BxDFFlags::IsSpecular() 539

Clamp() 1033

Float 23

HGPhaseFunction::p() 713

HGPhaseFunction::PDF() 714

LayeredBxDF::albedo 895

LayeredBxDF::thickness 895

LayeredBxDF::Tr() 896

PowerHeuristic() 66

SampleExponential() 1003

VolPathIntegrator 877

902 L I G H T T R A N S P O R T I I : V O L U M E R E N D E R I N G CHAPTER 14

Given a depth z′ found by adding or subtracting *z from the current depth z according to the
ray’s direction, medium scattering is chosen if z′ is inside the medium and surface scattering
is chosen otherwise. (The sampling scheme is thus similar to how the VolPathIntegrator
chooses between medium and surface scattering.) In the case of scattering from an interface,
the Clamp() call effectively forces z to lie on whichever of the two interfaces the ray intersects
next.

〈Sample medium scattering for layered BSDF evaluation〉 ≡ 901

Float sigma_t = 1;
Float dz = SampleExponential(r(), sigma_t / std::abs(w.z));
Float zp = w.z > 0 ? (z + dz) : (z - dz);
if (0 < zp && zp < thickness) {

〈Handle scattering event in layered BSDF medium 902〉
continue;

}
z = Clamp(zp, 0, thickness);

If z′ is inside the medium, we have the estimator

Tr(z → z′) Ls(z
′, −ω)

p(*z) |ωz|
.

Both the exponential factors and |ωz| factors in Tr and p(*z) cancel, and we are left with
simply the source function Ls(z

′, −ω), which should be scaled by the path throughput. The
following fragment adds an estimate of its value to the sum in f.

〈Handle scattering event in layered BSDF medium〉 ≡ 902

〈Account for scattering through exitInterface using wis 902〉
〈Sample phase function and update layered path state 903〉
〈Possibly account for scattering through exitInterface 903〉

For a scattering event inside the medium, it is necessary to add the contribution of the virtual
light source to the path radiance estimate and to sample a new direction to continue the path.
For the MIS lighting sample based on sampling the interface’s BTDF, the outgoing direction
from the path vertex is predetermined by the BTDF sample wis; all the factors of the path
contribution are easily evaluated and the MIS weight is found using the PDF for the other
sampling technique, sampling the phase function.

〈Account for scattering through exitInterface using wis〉 ≡ 902

Float wt = 1;
if (!IsSpecular(exitInterface.Flags()))

wt = PowerHeuristic(1, wis->pdf, 1, phase.PDF(-w, -wis->wi));
f += beta * albedo * phase.p(-w, -wis->wi) * wt * Tr(zp - exitZ, wis->wi) *

wis->f / wis->pdf;

The second sampling strategy for the virtual light is based on sampling the phase function
and then connecting to the virtual light source through the exit interface. Doing so shares
some common work with sampling a new direction for the path, so the implementation takes
the opportunity to update the path state after sampling the phase function here.

BxDF::f() 539

BxDF::Flags() 538

BxDF::PDF() 541

BxDFFlags::IsSpecular() 539

BxDFReflTransFlags 540

Float 23

HGPhaseFunction::Sample_p()
714

LayeredBxDF::albedo 895

LayeredBxDF::Tr() 896

PhaseFunctionSample 711

PhaseFunctionSample::p 711

PhaseFunctionSample::pdf 711

PhaseFunctionSample::wi 711

Point2f 92

PowerHeuristic() 66

SampledSpectrum 171

SECTION 14.3 S C A T T E R I N G F R O M L A Y E R E D M A T E R I A L S 903

〈Sample phase function and update layered path state〉 ≡ 902

Point2f u{r(), r()};
pstd::optional<PhaseFunctionSample> ps = phase.Sample_p(-w, u);
if (!ps || ps->pdf == 0 || ps->wi.z == 0)

continue;
beta *= albedo * ps->p / ps->pdf;
w = ps->wi;
z = zp;

There is no reason to try connecting through the exit interface if the current ray direction is
pointing away from it or if its BSDF is perfect specular.

〈Possibly account for scattering through exitInterface〉 ≡ 902

if (((z < exitZ && w.z > 0) || (z > exitZ && w.z < 0)) &&
!IsSpecular(exitInterface.Flags())) {

〈Account for scattering through exitInterface 903〉
}

If there is transmission through the interface, then because beta has already been updated
to include the effect of scattering at z′, only the transmittance to the exit, MIS weight, and
BTDF value need to be evaluated to compute the light’s contribution. One important detail
in the following code is the ordering of arguments to the call to f() in the first line: due to
the non-reciprocity of BTDFs, swapping these would lead to incorrect results.4

〈Account for scattering through exitInterface〉 ≡ 903

SampledSpectrum fExit = exitInterface.f(-w, wi, mode);
if (fExit) {

Float exitPDF =
exitInterface.PDF(-w, wi, mode, BxDFReflTransFlags::Transmission);

Float wt = PowerHeuristic(1, ps->pdf, 1, exitPDF);
f += beta * Tr(zp - exitZ, ps->wi) * fExit * wt;

}

If no medium scattering event was sampled, the next path vertex is at an interface. In this
case, the transmittance along the ray can be ignored: as before, the probability of evaluating
the first term of Equation (14.31) has probability equal to Tr and thus the two Tr factors
cancel, leaving us only needing to evaluate scattering at the boundary, Equation (14.32). The
details differ depending on which interface the ray intersected.

〈Account for scattering at appropriate interface〉 ≡ 901

if (z == exitZ) {
〈Account for reflection at exitInterface 904〉

} else {
〈Account for scattering at nonExitInterface〉

}

If the ray intersected the exit interface, then it is only necessary to update the path through-
put: no connection is made to the virtual light source since transmission through the exit
interface to the light is accounted for by the lighting computation at the previous vertex.
This fragment samples only the reflection component of the path here, since a ray that was
transmitted outside the medium would end the path.

4 As was learned, painfully, during the implementation of this BxDF.

AbsCosTheta() 107

BSDFSample 541

BSDFSample::f 541

BSDFSample::pdf 541

BSDFSample::pdfIsProportional
541

BSDFSample::wi 541

BxDF::Sample_f() 540

BxDFReflTransFlags::
Reflection
540

Float 23

PathIntegrator 833

Point2f 92

904 L I G H T T R A N S P O R T I I : V O L U M E R E N D E R I N G CHAPTER 14

〈Account for reflection at exitInterface〉 ≡ 903

Float uc = r();
pstd::optional<BSDFSample> bs = exitInterface.Sample_f(

-w, uc, Point2f(r(), r()), mode, BxDFReflTransFlags::Reflection);
if (!bs || !bs->f || bs->pdf == 0 || bs->wi.z == 0)

break;
beta *= bs->f * AbsCosTheta(bs->wi) / bs->pdf;
w = bs->wi;

The 〈Account for scattering at nonExitInterface〉 fragment handles scattering from the other
interface. It applies MIS to compute the contribution of the virtual light and samples a new
direction with a form very similar to the case of scattering within the medium, just with the
phase function replaced by the BRDF for evaluation and sampling. Therefore, we have not
included its implementation here.

BSDF Sampling
The implementation of Sample_f() is generally similar to f(), so we will not include its
implementation here, either. Its task is actually simpler: given the initial direction ωo at one
of the layer’s boundaries, it follows a random walk of scattering events through the layers and
the medium, maintaining both the path throughput and the product of PDFs for each of the
sampling decisions. When the random walk exits the medium, the outgoing direction is the
sampled direction that is returned in the BSDFSample.

With this approach, it can be shown that the ratio of the path throughput to the PDF is
equal to the ratio of the actual value of the BSDF and its PDF for the sampled direction (see
the “Further Reading” section for details). Therefore, when the weighted path throughput is
multiplied by the ratio of BSDFSample::f and BSDFSample::pdf, the correct weighting term
is applied. (Review, for example, the fragment 〈Update path state variables after surface
scattering〉 in the PathIntegrator.)

However, an implication of this is that the PDF value returned by Sample_f() cannot be used
to compute the multiple importance sampling weight if the sampled ray hits an emissive
surface; in that case, an independent estimate of the PDF must be computed via a call to
the PDF() method. The BSDFSample::pdfIsProportional member variable flags this case and
is set by Sample_f() here.

PDF Evaluation
The PDF p(ωo, ωi) that corresponds to a LayeredBxDF’s BSDF can be expressed as an infinite
sum. For example, consider the case of having a bottom layer that reflects light with BRDF f −

r
and a top layer that both reflects light with BRDF f +

r and transmits it with BTDF f +
t , with

an overall BSDF f + = f +
r + f +

t . If those BSDFs have associated PDFs p and if scattering in
the medium is neglected, then the overall PDF is

p(ωo, ωi) = p+
r (ωo, ωi)

+
∫

S2

∫

S2
p+

t (ωo, ω′) p−
r (−ω′, ω′′) p+

t (−ω′′, ωi) dω′dω′′ +
(14.36)

The first term gives the contribution for the PDF at the top interface and the second is
the PDF for directions ωi that were sampled via transmission through the top interface,
scattering at the bottom, and then transmission back out in direction ωi. Note the coupling of
directions between the PDF factors in the integrand: the negation of the initial transmitted
direction ω′ gives the first direction for evaluation of the base PDF p−

r , and so forth (see
Figure 14.21). Subsequent terms of this sum account for light that is reflected back downward

SECTION 14.3 S C A T T E R I N G F R O M L A Y E R E D M A T E R I A L S 905

pr
+(ωo, ωi)

(a) (b)

pt
+(ωo, ω′)

pr
–(–ω′, ω″)

pt
+(–ω″, ωi)

ωo

ω′ ω″

ωi

Figure 14.21: The First Two Terms of the Infinite Sum that Give a Layered BSDF’s PDF. (a) The PDF
of the reflection component of the interface’s BSDF accounts for light that scatters without entering the
layers. (b) The second term is given by a double integral over directions. A direction ω′ pointing into the
medium is sampled; it gives the second direction for the interface’s BTDF PDF p+

t and its negation gives
one of the two directions for p−

r . A second direction ω′′ is used for p−
r as well as for a second evaluation

of p+
t .

at the top interface instead of exiting the layers, and expressions of a similar form can be
found for the PDF if the base layer is also transmissive.

It is possible to compute a stochastic estimate of the PDF by applying Monte Carlo to the
integrals and by terminating the infinite sum using Russian roulette. For example, for the
integral in Equation (14.36), we have the estimator

p+
t (ωo, ω′) p−

r (−ω′, ω′′) p+
t (−ω′′, ωi)

p1(ω
′) p2(ω

′′)
, (14.37)

where ω′ is sampled from some distribution p1 and ω′′ from a distribution p2. There is
great freedom in choosing the distributions p1 and p2. However, as with algorithms like path
tracing, care must be taken if some of the PDFs are Dirac delta distributions. For example,
if the bottom layer is perfect specular, then p−

r (−ω′, ω′′) will always be zero unless ω′′ was
sampled according to its PDF.

Consider what happens if ω′ is sampled using f +
t ’s sampling method, conditioned on ωo,

and if ω′′ is sampled using f +
t ’s sampling method, conditioned on ωi: the first and last

probabilities in the numerator cancel with the probabilities in the denominator, and we are
left simply with p−

r (−ω′, ω′′) as the estimate; the effect of f +
t in the PDF is fully encapsulated

by the distribution of directions used to evaluate p−
r .

A stochastic estimate of the PDF can be computed by following a random walk in a manner
similar to the f() method, just with phase function and BSDF evaluation replaced with
evaluations of the corresponding PDFs. However, because the PDF() method is only called
to compute PDF values that are used for computing MIS weights, the implementation here
will return an approximate PDF; doing so does not invalidate the MIS estimator.5

5 It is admittedly unfriendly to provide an implementation of a method with a name that very clearly indicates
that it should return a valid PDF and yet does not in fact do that, and to justify this with the fact that doing so is
fine due to the current usage of the function. This represents a potentially gnarly bug lying in wait for someone
in the future who might not expect this when extending the system. For that, our apologies in advance.

BasicPBRTOptions::seed 1031

BxDF::PDF() 541

BxDFReflTransFlags 540

BxDFReflTransFlags::
Reflection
540

Float 23

GetOptions() 1032

Hash() 1042

LayeredBxDF::bottom 895

LayeredBxDF::nSamples 896

LayeredBxDF::top 895

OneMinusEpsilon 470

RNG 1054

RNG::Uniform<Float>() 1056

SameHemisphere() 538

TransportMode 571

Vector3f 86

906 L I G H T T R A N S P O R T I I : V O L U M E R E N D E R I N G CHAPTER 14

〈LayeredBxDF Public Methods〉 +≡ 895

Float PDF(Vector3f wo, Vector3f wi, TransportMode mode,
BxDFReflTransFlags sampleFlags = BxDFReflTransFlags::All) const {

〈Set wo and wi for layered BSDF evaluation〉
〈Declare RNG for layered PDF evaluation 906〉
〈Update pdfSum for reflection at the entrance layer 906〉
for (int s = 0; s < nSamples; ++s) {

〈Evaluate layered BSDF PDF sample 906〉
}
〈Return mixture of PDF estimate and constant PDF 908〉

}

It is important that the RNG for the PDF() method is seeded differently than it is for the f()
method, since it will often be called with the same pair of directions as are passed to f(), and
we would like to be certain that there is no correlation between the results returned by the
two of them.

〈Declare RNG for layered PDF evaluation〉 ≡ 906

RNG rng(Hash(GetOptions().seed, wi), Hash(wo));
auto r = [&rng]() { return std::min<Float>(rng.Uniform<Float>(),

OneMinusEpsilon); };

If both directions are on the same side of the surface, then part of the full PDF is given
by the PDF for reflection at the interface (this was the first term of Equation (14.36)).
This component can be evaluated non-stochastically, assuming that the underlying PDF()
methods are not themselves stochastic.

〈Update pdfSum for reflection at the entrance layer〉 ≡ 906

bool enteredTop = twoSided || wo.z > 0;
Float pdfSum = 0;
if (SameHemisphere(wo, wi)) {

auto reflFlag = BxDFReflTransFlags::Reflection;
pdfSum += enteredTop ?

nSamples * top.PDF(wo, wi, mode, reflFlag) :
nSamples * bottom.PDF(wo, wi, mode, reflFlag);

}

The more times light has been scattered, the more isotropic its directional distribution
tends to become. We can take advantage of this fact by evaluating only the first term of the
stochastic PDF estimate and modeling the remaining terms with a uniform distribution. We
further neglect the effect of scattering in the medium, again under the assumption that if it
is significant, a uniform distribution will be a suitable approximation.

〈Evaluate layered BSDF PDF sample〉 ≡ 906

if (SameHemisphere(wo, wi)) {
〈Evaluate TRT term for PDF estimate 907〉

} else {
〈Evaluate TT term for PDF estimate〉

}

If both directions are on the same side of the interface, then the remaining PDF integral is the
double integral of the product of three PDFs that we considered earlier. We use the shorthand
“TRT” for this case, corresponding to transmission, then reflection, then transmission.

BottomBxDF 895

BSDF::Sample_f() 545

BSDFSample 541

BSDFSample::f 541

BSDFSample::pdf 541

BSDFSample::wi 541

BxDF::Flags() 538

BxDF::PDF() 541

BxDFFlags::IsNonSpecular()
539

BxDFReflTransFlags 540

TopBxDF 895

TopOrBottomBxDF 896

SECTION 14.3 S C A T T E R I N G F R O M L A Y E R E D M A T E R I A L S 907

〈Evaluate TRT term for PDF estimate〉 ≡ 906

TopOrBottomBxDF<TopBxDF, BottomBxDF> rInterface, tInterface;
if (enteredTop) {

rInterface = ⊥ tInterface = ⊤
} else {

rInterface = ⊤ tInterface = ⊥
}
〈Sample tInterface to get direction into the layers 907〉
〈Update pdfSum accounting for TRT scattering events 907〉

We will apply two sampling strategies. The first is sampling both directions via tInterface,
once conditioned on ωo and once on ωi—effectively a bidirectional approach. The second is
sampling one direction via tInterface conditioned on ωo and the other via rInterface con-
ditioned on the first sampled direction. These are then combined using multiple importance
sampling. After canceling factors and introducing an MIS weight w(ω′′), Equation (14.37)
simplifies to

w(ω′′)
p−

r (−ω′, ω′′) p+
t (−ω′′, ωi)

p(ω′′)
, (14.38)

which is the estimator for both strategies.

Both sampling methods will use the wos sample while only one uses wis.

〈Sample tInterface to get direction into the layers〉 ≡ 907

auto trans = BxDFReflTransFlags::Transmission;
pstd::optional<BSDFSample> wos, wis;
wos = tInterface.Sample_f(wo, r(), {r(), r()}, mode, trans);
wis = tInterface.Sample_f(wi, r(), {r(), r()}, !mode, trans);

If tInterface is perfect specular, then there is no need to try sampling p−
r or to apply MIS.

The p−
r PDF is all that remains from Equation (14.38).

〈Update pdfSum accounting for TRT scattering events〉 ≡ 907

if (wos && wos->f && wos->pdf > 0 && wis && wis->f && wis->pdf > 0) {
if (!IsNonSpecular(tInterface.Flags()))

pdfSum += rInterface.PDF(-wos->wi, -wis->wi, mode);
else {

〈Use multiple importance sampling to estimate PDF product 907〉
}

}

Otherwise, we sample from p−
r as well. If that sample is from a perfect specular component,

then again there is no need to use MIS and the estimator is just p+
t (−ω′′, ωi).

〈Use multiple importance sampling to estimate PDF product〉 ≡ 907

pstd::optional<BSDFSample> rs =
rInterface.Sample_f(-wos->wi, r(), {r(), r()}, mode);

if (rs && rs->f && rs->pdf > 0) {
if (!IsNonSpecular(rInterface.Flags()))

pdfSum += tInterface.PDF(-rs->wi, wi, mode);
else {

〈Compute MIS-weighted estimate of Equation (14.38) 908〉
}

}

BSDFSample::pdf 541

BSDFSample::wi 541

BxDF::PDF() 541

Float 23

LayeredBxDF 895

LayeredBxDF::nSamples 896

Lerp() 72

Pi 1033

PowerHeuristic() 66

908 L I G H T T R A N S P O R T I I : V O L U M E R E N D E R I N G CHAPTER 14

If neither interface has a specular sample, then both are combined. For the first sampling
technique, the second p+

t factor cancels out as well and the estimator is p−
r (−ω′, −ω′′) times

the MIS weight.

〈Compute MIS-weighted estimate of Equation (14.38)〉 ≡ 907

Float rPDF = rInterface.PDF(-wos->wi, -wis->wi, mode);
Float wt = PowerHeuristic(1, wis->pdf, 1, rPDF);
pdfSum += wt * rPDF;

Similarly, for the second sampling technique, we are left with a p+
t PDF to evaluate and then

weight using MIS.

〈Compute MIS-weighted estimate of Equation (14.38)〉 +≡ 907

Float tPDF = tInterface.PDF(-rs->wi, wi, mode);
wt = PowerHeuristic(1, rs->pdf, 1, tPDF);
pdfSum += wt * tPDF;

The 〈Evaluate TT term for PDF estimate〉 fragment is of a similar form, so it is not included
here.

The final returned PDF value has the PDF for uniform spherical sampling, 1/4π , mixed with
the estimate to account for higher-order terms.

〈Return mixture of PDF estimate and constant PDF〉 ≡ 906

return Lerp(0.9f, 1 / (4 * Pi), pdfSum / nSamples);

14.3.3 COATED DIFFUSE AND COATED CONDUCTOR MATERIALS

Adding a dielectric interface on top of both diffuse materials and conductors is often useful
to model surface reflection. For example, plastic can be modeled by putting such an interface
above a diffuse material, and coated metals can be modeled by adding such an interface as
well. In both cases, introducing a scattering layer can model effects like tarnish or weathering.
Figure 14.22 shows the dragon model with a few variations of these.

pbrt provides both the CoatedDiffuseBxDF and the CoatedConductorBxDF for such uses. There
is almost nothing to their implementations other than a public inheritance from LayeredBxDF
with the appropriate types for the two interfaces.

〈CoatedDiffuseBxDF Definition〉 ≡
class CoatedDiffuseBxDF :

public LayeredBxDF<DielectricBxDF, DiffuseBxDF, true> {
public:

〈CoatedDiffuseBxDF Public Methods〉
};

〈CoatedConductorBxDF Definition〉 ≡
class CoatedConductorBxDF :

public LayeredBxDF<DielectricBxDF, ConductorBxDF, true> {
public:

〈CoatedConductorBxDF Public Methods〉
};

There are also corresponding Material implementations, CoatedDiffuseMaterial and
CoatedConductorMaterial. Their implementations follow the familiar pattern of evaluat-
ing textures and then initializing the corresponding BxDF, and they are therefore not in-
cluded here.

ConductorBxDF 560

DielectricBxDF 563

DiffuseBxDF 546

LayeredBxDF 895

Material 674

F U R T H E R R E A D I N G 909

(a) (b) (c)

Figure 14.22: A Variety of Effects That Can Be Achieved Using Layered Materials. (a) Dragon model with a blue diffuse BRDF.
(b) The effect of adding a smooth dielectric interface on top of the diffuse BRDF. In addition to the specular highlights, note how the color
has become more saturated, which is due to multiple scattering from paths that reflected back into the medium from the exit interface.
(c) The effect of roughening the interface. The surface appears less shiny, but the blue remains more saturated. (Dragon model courtesy
of the Stanford Computer Graphics Laboratory.)

FURTHER READING

Lommel (1889) first derived the equation of transfer. Not only did he derive this equation,
but he also solved it in some simplified cases in order to estimate reflection functions from
real-world surfaces (including marble and paper), and he compared his solutions to mea-
sured reflectance data from these surfaces. The equation of transfer was independently found
by Khvolson (1890) soon afterward; see Mishchenko (2013) for a history of early work in the
area.

Seemingly unaware of Lommel’s work, Schuster (1905) was the next researcher in radiative
transfer to consider the effect of multiple scattering. He used the term self-illumination to
describe the fact that each part of the medium is illuminated by every other part of the
medium, and he derived differential equations that described reflection from a slab along the
normal direction, assuming the presence of isotropic scattering. The conceptual framework
that he developed remains essentially unchanged in the field of radiative transfer.

Soon thereafter, Schwarzschild (1906) introduced the concept of radiative equilibrium, and
Jackson (1910) expressed Schuster’s equation in integral form, also noting that “the obvious
physical mode of solution is Liouville’s method of successive substitutions” (i.e., a Neumann
series solution). Finally, King (1913) completed the rediscovery of the equation of transfer by
expressing it in the general integral form.

Books by Chandrasekhar (1960), Preisendorfer (1965, 1976), and van de Hulst (1980) cover
volume light transport in depth. D’Eon’s book (2016) extensively discusses scattering prob-
lems, including both analytic and Monte Carlo solutions, and contains many references to
related work in other fields.

The equation of transfer was introduced to graphics by Kajiya and Von Herzen (1984). Arvo
(1993) made essential connections between previous formalizations of light transport in
graphics and the equation of transfer as well as to the field of radiative transfer in general.
Pauly et al. (2000) derived the generalization of the path integral form of the light transport
equation for the volume-scattering case; see also Chapter 3 of Jakob’s Ph.D. thesis (2013) for
a full derivation.

The integral null-scattering volume light transport equation was derived by Galtier et al.
(2013) in the field of radiative transfer; Eymet et al. (2013) described the generalization to

SampleUniformSphere() 1016

910 L I G H T T R A N S P O R T I I : V O L U M E R E N D E R I N G CHAPTER 14

include scattering from surfaces. This approach was introduced to graphics by Novák et al.
(2014). Miller et al. (2019) derived its path integral form, which made it possible to apply
powerful variance reduction techniques based on multiple importance sampling.

Volumetric Path Tracing
von Neumann’s original description of the Monte Carlo algorithm was in the context of neu-
tron transport problems (Ulam et al. 1947); his technique included the algorithm for sam-
pling distances from an exponential distribution (our Equation (A.2)), uniformly sampling
3D directions via uniform sampling of cos θ (as implemented in SampleUniformSphere()),
and randomly choosing among scattering events as described in Section 14.1.2.

Rushmeier (1988) was the first to use Monte Carlo to solve the volumetric light transport
equation in a general setting.

Szirmay-Kalos et al. (2005) precomputed interactions between sample points in the medium
in order to more quickly compute multiple scattering. Kulla and Fajardo (2012) proposed a
specialized sampling technique that is effective for light sources inside participating media.
(This technique was first introduced in the field of neutron transport by Kalli and Cashwell
(1977).) Georgiev et al. (2013) made the observation that incremental path sampling can
generate particularly bad paths in participating media. They proposed new multi-vertex
sampling methods that better account for all the relevant terms in the equation of transfer.

Sampling direct illumination from lights at points inside media surrounded by an interface is
challenging; traditional direct lighting algorithms are not applicable at points inside the me-
dium, as refraction through the interface will divert the shadow ray’s path. Walter et al. (2009)
considered this problem and developed algorithms to efficiently find paths to lights account-
ing for this refraction. More recent work on this topic was done by Holzschuch (2015) and
Koerner et al. (2016). Weber et al. (2017) developed an approach for more effectively sam-
pling direct lighting in forward scattering media by allowing multiple scattering events along
the path to the light.

Szirmay-Kalos et al. (2017) first showed the use of the integral null-scattering volume light
transport equation for rendering scattering inhomogeneous media. Kutz et al. (2017) sub-
sequently applied it to efficient rendering of spectral media and Szirmay-Kalos et al. (2018)
developed improved algorithms for sampling multiple scattering. After deriving the path in-
tegral formulation, Miller et al. (2019) used it to show the effectiveness of combining a variety
of sampling techniques using multiple importance scattering, including bidirectional path
tracing.

The visual appearance of high-albedo objects like clouds is striking, but many bounces may
be necessary for good results. Wrenninge et al. (2013) described an approximation where
after the first few bounces, the scattering coefficient, the attenuation coefficient for shadow
rays, and the eccentricity of the phase function are all progressively reduced. Kallweit et al.
(2017) applied neural networks to store precomputed multiple scattering solutions for use in
rendering highly scattering clouds.

Pegoraro et al. (2008b) developed a Monte Carlo sampling approach for rendering partici-
pating media that used information from previous samples to guide future sampling. More
recent work in volumetric path guiding by Herholz et al. applied product sampling based on
the phase function and an approximation to the light distribution in the medium (Herholz
et al. 2019). Wrenninge and Villemin (2020) developed a volumetric product sampling ap-
proach based on adapting the majorant to account for important regions of the integrand
and then randomly selecting among candidate samples based on weights that account for

LayeredBxDF 895

VolPathIntegrator 877

F U R T H E R R E A D I N G 911

factors beyond transmittance. Villeneuve et al. (2021) have also developed algorithms for
product sampling in media, accounting for the surface normal at area light sources, trans-
mittance along the ray, and the phase function.

Volumetric emission is not handled efficiently by the VolPathIntegrator, as there is no
specialized sampling technique to account for it. Villemin and Hery (2013) precomputed
tabularized CDFs for sampling volumetric emission, and Simon et al. (2017) developed
further improvements, including integrating emission along rays and using the sampled
point in the volume solely to determine the initial sampling direction, which gives better
results in dense media.

The one-dimensional volumetric light transport algorithms implemented in LayeredBxDF are
based on Guo et al.’s approach (2018).

Other Light Transport Algorithms
Blinn (1982b) first used basic volume scattering algorithms for computer graphics. Rush-
meier and Torrance (1987) used finite-element methods for rendering participating media.
Other early work in volume scattering for computer graphics includes work by Max (1986);
Nishita, Miyawaki, and Nakamae (1987); Bhate and Tokuta’s approach based on spherical
harmonics (Bhate and Tokuta 1992), and Blasi et al.’s two-pass Monte Carlo algorithm, where
the first pass shoots energy from the lights and stores it in a grid and the second pass does
final rendering using the grid to estimate illumination at points in the scene (Blasi, Saëc, and
Schlick 1993). Glassner (1995) provided a thorough overview of this topic and early applica-
tions of it in graphics, and Max’s survey article (Max 1995) also covers early work well. See
Cerezo et al. (2005) for an extensive survey of approaches to rendering participating media
up through 2005.

One important application of volume scattering algorithms in computer graphics has been
simulating atmospheric scattering. Work in this area includes early papers by Klassen (1987)
and Preetham et al. (1999), who introduced a physically rigorous and computationally effi-
cient atmospheric and sky-lighting model. Haber et al. (2005) described a model for twilight,
and Hošek and Wilkie (2012, 2013) developed a comprehensive model for sky- and sun-
light. Bruneton evaluated the accuracy and efficiency of a number of models for atmospheric
scattering (Bruneton 2017). A sophisticated model that accurately accounts for polarization,
observers at arbitrary altitudes, and the effect of atmospheric scattering for objects at finite
distances was recently introduced by Wilkie et al. (2021).

Jarosz et al. (2008a) first extended the principles of irradiance caching to participating media.
Marco et al. (2018) described a state-of-the-art algorithm for volumetric radiance caching
based on Schwarzhaupt et al.’s surface-based second-order derivatives (Schwarzhaupt et al.
2012).

Jensen and Christensen (1998) were the first to generalize the photon-mapping algorithm to
participating media. Knaus and Zwicker (2011) showed how to render participating media
using stochastic progressive photon mapping (SPPM). Jarosz et al. (2008b) had the impor-
tant insight that expressing the scattering integral over a beam through the medium as the
measurement to be evaluated could make photon mapping’s rate of convergence much higher
than if a series of point photon estimates was instead taken along each ray. Section 5.6 of
Hachisuka’s thesis (2011) and Jarosz et al. (2011a, 2011b) showed how to apply this approach
progressively. For another representation, see Jakob et al. (2011), who fit a sum of anisotropic
Gaussians to the equilibrium radiance distribution in participating media.

912 L I G H T T R A N S P O R T I I : V O L U M E R E N D E R I N G CHAPTER 14

Many of the other bidirectional light transport algorithms discussed in the “Further Reading”
section of Chapter 13 also have generalizations to account for participating media. See also
Jarosz’s thesis (2008), which has extensive background on this topic and includes a number
of important contributions.

Some researchers have had success in deriving closed-form expressions that describe scat-
tering along unoccluded ray segments in participating media; these approaches can be sub-
stantially more efficient than integrating over a series of point samples. See Sun et al. (2005),
Pegoraro and Parker (2009), and Pegoraro et al. (2009, 2010, 2011) for examples of such
methods. (Remarkably, Pegoraro and collaborators’ work provides a closed-form expression
for scattering from a point light source along a ray passing through homogeneous participat-
ing media with anisotropic phase functions.)

Subsurface Scattering
Subsurface scattering models based on volumetric light transport were first introduced to
graphics by Hanrahan and Krueger (1993), although their approach did not attempt to sim-
ulate light that entered the object at points other than at the point being shaded. Dorsey et al.
(1999) applied photon maps to simulating subsurface scattering that did include this effect,
and Pharr and Hanrahan (2000) introduced an approach based on computing BSSRDFs for
arbitrary scattering media with an integral over the medium’s depth.

The diffusion approximation has been shown to be an effective way to model highly scattering
media for rendering. It was first introduced to graphics by Kajiya and Von Herzen (1984),
though Stam (1995) was the first to clearly identify many of its advantages for rendering.

A solution of the diffusion approximation based on dipoles was developed by Farrell et al.
(1992); that approach was applied to BSSRDF modeling for rendering by Jensen et al.
(2001b). Subsequent work by Jensen and Buhler (2002) improved the efficiency of that
method. A more accurate solution based on photon beam diffusion was developed by Ha-
bel et al. (2013). (The online edition of this book includes the implementation of a BSSRDF
model based on photon beam diffusion as well as many more references to related work.)

Rendering realistic human skin is a challenging problem; this problem has driven the de-
velopment of a number of new methods for rendering subsurface scattering after the initial
dipole work as issues of modeling the layers of skin and computing more accurate simula-
tions of scattering between layers have been addressed. For a good overview of these issues,
see Igarashi et al.’s (2007) survey on the scattering mechanisms inside skin and approaches
for measuring and rendering skin. Notable research in this area includes papers by Don-
ner and Jensen (2006), d’Eon et al. (2007), Ghosh et al. (2008), and Donner et al. (2008).
Donner’s thesis includes a discussion of the importance of accurate spectral representations
for high-quality skin rendering (Donner 2006, Section 8.5). See Gitlina et al. (2020) for re-
cent work in the measurement of the scattering properties of skin and fitting it to a BSSRDF
model.

An alternative to BSSRDF-based approaches to subsurface scattering is to apply the same
volumetric Monte Carlo path-tracing techniques that are used for other scattering media.
This approach is increasingly used in production (Chiang et al. 2016b). See Wrenninge et al.
(2017) for a discussion of such a model designed for artistic control and expressiveness.

Křivánek and d’Eon introduced the theory of zero-variance random walks for path-traced
subsurface scattering, applying Dwivedi’s sampling technique (1982a; 1982b) to guide paths
to stay close to the surface while maintaining an unbiased estimator (Křivánek and d’Eon
2014). Meng et al. (2016) developed further improvements to this approach, including strate-

F U R T H E R R E A D I N G 913

gies that handle back-lit objects more effectively. More recent work on zero-variance theory
by d’Eon and Křivánek (2020) includes improved results with isotropic scattering and new
sampling schemes that further reduce variance.

Leonard et al. (2021) applied machine learning to subsurface scattering, training conditional
variational auto-encoders to sample scattering, to model absorption probabilities, and to
sample the positions of ray paths in spherical regions. They then used these capabilities to
implement an efficient sphere-tracing algorithm.

Generalizations
Moon et al. (2007) made the important observation that some of the assumptions underlying
the use of the equation of transfer—that the scattering particles in the medium are not too
close together so that scattering events can be considered to be statistically independent—
are not in fact true for interesting scenes that include small crystals, ice, or piles of many
small glass objects. They developed a new light transport algorithm for these types of discrete
random media based on composing precomputed scattering solutions. (See also concurrent
work by Lee and O’Sullivan (2007) on composing scattering solutions.) Further work on
rendering such materials was done by Müller et al. (2016), Guo et al. (2019), and Zhang
and Zhao (2020).

Non-exponential media have distributions of interactions that are not described by an expo-
nential distribution. They arise from media that have correlation in the distribution of their
particles. The assumption of uncorrelated media that we adopted in Chapter 11 and have
used throughout this chapter can immediately be understood to be at minimum not quite
right by considering the fact that there must be a minimum distance between any two par-
ticles; thus, the distribution cannot be perfectly uncorrelated. In practice, media with even
more significant correlations are common; a variety of physical effects that lead to them are
described by Bitterli et al. (2018b). Both d’Eon (2018) and Jarabo et al. (2018) developed
generalizations of the equation of transfer that allow non-exponential media. Bitterli et al.
(2018b) presented a more general path integral form of it that maintains reciprocity and al-
lows heterogeneous media.

Jakob et al. (2010) derived a generalized transfer equation that describes scattering by dis-
tributions of oriented particles. They proposed a microflake scattering model as a specific
example of a particle distribution (where a microflake is the volumetric analog of a micro-
facet on a surface) and showed a number of ways of solving this equation based on Monte
Carlo, finite elements, and a dipole model. More recently, Heitz et al. (2015) derived a gener-
alized microflake distribution, which is considerably more efficient to sample and evaluate.
Their model quantifies the local scattering properties using projected areas observed from
different directions, which adds a well-defined notion of volumetric level of detail. Zhao et al.
(2016) and Loubet and Neyret (2018) developed techniques for downsampling microflake
distributions while still maintaining their visual appearance.

The equation of transfer assumes that the index of refraction of a medium will only change
at discrete boundaries, though many actual media have continuously varying indices of
refraction. Ament et al. (2014) derived a variant of the equation of transfer that allows for
this case and applied photon mapping to render images with it. Pediredla et al. (2020) further
investigated this topic and developed an unbiased rendering algorithm for such media based
on path tracing.

Handling fluorescence in the context of volumetric scattering introduces a number of com-
plexities discussed by Mojzı́k et al. (2018), who also derived a fluorescence-aware sampling
algorithm.

LayeredBxDF 895

Medium 714

RayMajorantSegment 718

SampleT_maj() 859

VolPathIntegrator 877

VolPathIntegrator::SampleLd()
886

914 L I G H T T R A N S P O R T I I : V O L U M E R E N D E R I N G CHAPTER 14

EXERCISES

14.1 Replace ratio tracking in the VolPathIntegrator::SampleLd() method with delta
tracking. After you confirm that your changes converge to the correct result, mea-
sure the difference in performance and MSE in order to compare the Monte Carlo
efficiency of the two approaches for a variety of volumetric data sets. Do you find
any cases where delta tracking is more efficient? If so, can you explain why?

14.2 Residual ratio tracking can compute transmittance more efficiently than ratio track-
ing in dense media; it is based on finding lower bounds of σt in regions of space,
analytically computing that portion of the transmittance, and then using ratio
tracking for the remaining variation (Novák et al. 2014). Implement this approach
in pbrt and measure its effectiveness. Note that you will need to make modifications
to both the Medium’s RayMajorantSegment representation and the implementation of
the VolPathIntegrator in order to do so.

14.3 The current implementation of SampleT_maj() consumes a new uniform random
value for each RayMajorantSegment returned by the medium’s iterator. Its sampling
operation can alternatively be implemented using a single uniform value to sam-
ple a total optical thickness and then finding the point along the ray where that
optical thickness has been accumulated. Modify SampleT_maj() to implement that
approach and measure rendering performance. Is there a benefit compared to the
current implementation?

14.4 It is not possible to directly sample emission in volumes with the current Medium
interface. Thus, integrators are left to include emission only when their random
walk through a medium happens to find a part of it that is emissive. This approach
can be quite inefficient, especially for localized bright emission. Add methods to
the Medium interface that allow for sampling emission and modify the direct light-
ing calculation in the VolPathIntegrator to use them. For inspiration, it may be
worthwhile to read the papers by Villemin and Hery (2013) and Simon et al. (2017)
on Monte Carlo sampling of 3D emissive volumes. Measure the improvement in
efficiency with your approach. Are there any cases where it hurts performance?

14.5 While sampling distances in participating media according to the majorant is much
more effective than sampling uniformly, it does not account for other factors that
vary along the ray, such as the scattering coefficient and phase function or variation
in illumination from light sources. Implement the approach described by Wren-
ninge and Villemin (2020) on product sampling based on adapting the majorant to
account for multiple factors in the integrand and then randomly selecting among
weighted sample points. (You may find weighted reservoir sampling (Section A.2)
a useful technique to apply in order to avoid the storage costs of maintaining the
candidate samples.) Measure the performance of your implementation as well as
how much it improves image quality for tricky volumetric scenes.

14.6 Add the capability to specify a bump or normal map for the bottom interface in
the LayeredBxDF. (The current implementation applies bump mapping at the top
interface only.) Render images that show the difference between perturbing the
normal at the top interface and having a smooth bottom interface and vice versa.

14.7 Investigate the effect of improving the sampling patterns used in the LayeredBxDF—
for example, by replacing the uniform random numbers used with low-discrepancy
points. You may need to pass further information through the BSDF evaluation
routines to do so, such as the current pixel, pixel sample, and current ray depth.

LayeredBxDF 895

E X E R C I S E S 915

Measure how much error is reduced by your changes as well as their performance
impact.

14.8 Generalize the LayeredBxDF to allow the specification of an arbitrary number of
layers with different media between them. You may want to review the improved
sampling techniques for this case that were introduced by Gamboa et al. (2020).
Verify that your implementation gives equivalent results to nested application of
the LayeredBxDF and measure the efficiency difference between the two approaches.

