
CHAPTER CHAPTER ELEVENELEVEN



Integrator 22

Medium 714

11 VOLUME SCATTERING

We have assumed so far that scenes are made up of collections of surfaces in a vacuum, which
means that radiance is constant along rays between surfaces. However, there are many real-
world situations where this assumption is inaccurate: fog and smoke attenuate and scatter
light, and scattering from particles in the atmosphere makes the sky blue and sunsets red.
This chapter introduces the mathematics that describe how light is affected as it passes
through participating media—large numbers of very small particles distributed throughout
a region of 3D space. These volume scattering models in computer graphics are based on the
assumption that there are so many particles that scattering is best modeled as a probabilistic
process rather than directly accounting for individual interactions with particles. Simulating
the effect of participating media makes it possible to render images with atmospheric haze,
beams of light through clouds, light passing through cloudy water, and subsurface scattering,
where light exits a solid object at a different place than where it entered.

This chapter first describes the basic physical processes that affect the radiance along rays
passing through participating media, including the phase function, which characterizes the
distribution of light scattered at a point in space. (It is the volumetric analog to the BSDF.) It
then introduces transmittance, which describes the attenuation of light in participating me-
dia. Computing unbiased estimates of transmittance can be tricky, so we then discuss null
scattering, a mathematical formalism that makes it easier to sample scattering integrals like
the one that describes transmittance. Next, the Medium interface is defined; it is used for rep-
resenting the properties of participating media in a region of space. Medium implementations
provide information about the scattering properties at points in their extent. This chapter
does not cover techniques related to computing lighting and the effect of multiple scattering
in volumetric media; the associated Monte Carlo integration algorithms and implementa-
tions of Integrators that handle volumetric effects will be the topic of Chapter 14.

11.1 VOLUME SCATTERING PROCESSES

There are three main physical processes that affect the distribution of radiance in an environ-
ment with participating media:

. Absorption: the reduction in radiance due to the conversion of light to another form of
energy, such as heat.



698 V O L U M E S C A T T E R I N G CHAPTER 11

Figure 11.1: Dragon Illuminated by a Spotlight through Fog. Light scattering from particles in the
medium back toward the camera makes the spotlight’s illumination visible even in pixels where there are
no visible surfaces that reflect it. The dragon blocks light, casting a volumetric shadow on the right side of
the image. (Dragon model courtesy of the Stanford Computer Graphics Laboratory.)

. Emission: radiance that is added to the environment from luminous particles.

. Scattering : radiance heading in one direction that is scattered to other directions due to
collisions with particles.

The characteristics of all of these properties may be homogeneous or inhomogeneous. Ho-
mogeneous properties are constant throughout some region of space, while inhomogeneous
properties vary throughout space. Figure 11.1 shows a simple example of volume scattering,
where a spotlight shining through a homogeneous participating medium illuminates parti-
cles in the medium and casts a volumetric shadow.

All of these processes may have different behavior at different wavelengths of light. While
wavelength-dependent emission can be handled in the same way that it is from surface
emitters, wavelength-dependent absorption and scattering require special handling in Monte
Carlo estimators. We will gloss past those details in this chapter, deferring discussion of them
until Section 14.2.2.

Physically, these processes all happen discretely: a photon is absorbed by some particle or
it is not. We will nevertheless model all of these as continuous processes, following the same
assumptions as underlie our use of radiometry to model light in pbrt (Section 4.1). However,
as we apply Monte Carlo to solve the integrals that describe this process, we will end up
considering the effect of these processes at particular points in the scene, which we will term
scattering events. Note that “scattering events” is a slight misnomer, since absorption is a
possibility as well as scattering.

All the models in this chapter are based on the assumption that the positions of the parti-
cles are uncorrelated—in other words, that although their density may vary spatially, their
positions are otherwise independent. (In the context of the colors of noise introduced in Sec-
tion 8.1.6, the assumption is a white noise distribution of their positions.) This assumption
does not hold for many types of physical media; for example, it is not possible for two par-



SECTION 11.1 V O L U M E S C A T T E R I N G P R O C E S S E S 699

ticles to both be in the same point in space and so a true white noise distribution is not
possible. See the “Further Reading” section at the end of the chapter for pointers to recent
work in relaxing this assumption.

11.1.1 ABSORPTION

Consider thick black smoke from a fire: the smoke obscures the objects behind it because its
particles absorb light traveling from the object to the viewer. The thicker the smoke, the more
light is absorbed. Figure 11.2 shows this effect with a realistic cloud model.

Absorption is described by the medium’s absorption coefficient , σa, which is the probability
density that light is absorbed per unit distance traveled in the medium. (Note that the
medium absorption is distinct from the absorption coefficient used in specifying indices of
refraction of conductors, as introduced in Section 9.3.6.) It is usually a spectrally varying
quantity, though we will neglect the implications of that detail in this chapter and return to
them in Section 14.2.2. Its units are reciprocal distance (m−1), which means that σa can take

(a)

(b)

Figure 11.2: If a participating medium primarily absorbs light passing through it, it will have a dark
appearance, as shown here. (a) A relatively dense medium leads to a more apparent boundary as well
as a darker result. (b) A less dense medium gives a softer look, as more light makes it through the medium.
(Cloud model courtesy of Walt Disney Animation Studios.)



700 V O L U M E S C A T T E R I N G CHAPTER 11

Li(p, –ω) Lo(p, ω)

Figure 11.3: Absorption reduces the amount of radiance along a ray through a participating medium.
Consider a ray carrying incident radiance at a point p from direction −ω. If the ray passes through a
differential cylinder filled with absorbing particles, the change in radiance due to absorption by those
particles is dLo(p, ω) = −σa(p, ω)Li(p, −ω)dt .

on any nonnegative value; it is not required to be between 0 and 1, for instance. In general, the
absorption coefficient may vary with both position p and direction ω, although the volume
scattering code in pbrt models it as purely a function of position. We will therefore sometimes
simplify notation by not including ω in the use of σa and other related scattering properties,
though it is easy enough to reintroduce when it is relevant.

Figure 11.3 shows the effect of absorption along a very short segment of a ray. Some amount
of radiance Li(p, −ω) is arriving at point p, and we would like to find the exitant radiance
Lo(p, ω) after absorption in the differential volume. This change in radiance along the
differential ray length dt is described by the differential equation1

Lo(p, ω) − Li(p, −ω) = dLo(p, ω) = −σa(p, ω) Li(p, −ω) dt,

which says that the differential reduction in radiance along the beam is a linear function of
its initial radiance. (This is another instance of the linearity assumption in radiometry: the
fraction of light absorbed does not vary based on the ray’s radiance, but is always a fixed
fraction.)

This differential equation can be solved to give the integral equation describing the total
fraction of light absorbed for a ray. If we assume that the ray travels a distance d in direction
ω through the medium starting at point p, the surviving portion of the original radiance is
given by

e−
∫ d

0
σa(p+tω,ω) dt

.

11.1.2 EMISSION

While absorption reduces the amount of radiance along a ray as it passes through a medium,
emission increases it due to chemical, thermal, or nuclear processes that convert energy into
visible light. Figure 11.4 shows emission in a differential volume, where we denote emitted
radiance added to a ray per unit distance at a point p in direction ω by σa(p, ω)Le(p, ω).
Figure 11.5 shows the effect of emission with a data set from a physical simulation of an
explosion.

The differential equation that gives the change in radiance due to emission is

dLo(p, ω) = σa(p, ω) Le(p, ω) dt. (11.1)

The presence of σa on the right hand side stems from the connection between how efficiently
an object absorbs light and how efficiently it emits it, as was introduced in Section 4.4.1. That

1 The position for the Li functions should actually be p + dtω, though in a slight abuse of notation we will here
and elsewhere use p.



SECTION 11.1 V O L U M E S C A T T E R I N G P R O C E S S E S 701

Li(p, –ω) Lo(p, ω)

Figure 11.4: The volume emission function Le(p, ω) gives the change in radiance along a ray as it passes
through a differential volume of emissive particles. The change in radiance due to emission per differential
distance is given by Equation (11.1).

Figure 11.5: A Participating Medium Where the Dominant Volumetric Effect Is Emission. (Scene
courtesy of Jim Price.)

factor also ensures that the corresponding term has units of radiance when the differential
equation is converted to an integral equation.

Note that this equation incorporates the assumption that the emitted light Le is not depen-
dent on the incoming light Li. This is always true under the linear optics assumptions that
pbrt is based on.

11.1.3 OUT SCATTERING AND ATTENUATION

The third basic light interaction in participating media is scattering. As a ray passes through
a medium, it may collide with particles and be scattered in different directions. This has two
effects on the total radiance that the beam carries. It reduces the radiance exiting a differential
region of the beam because some of it is deflected to different directions. This effect is called



702 V O L U M E S C A T T E R I N G CHAPTER 11

Li(p, –ω) Lo(p, ω)

Figure 11.6: Like absorption, out scattering also reduces the radiance along a ray. Light that hits particles
may be scattered in another direction such that the radiance exiting the region in the original direction is
reduced.

out scattering (Figure 11.6) and is the topic of this section. However, radiance from other rays
may be scattered into the path of the current ray; this in-scattering process is the subject of
the next section. We will sometimes say that these two forms of scattering are real scattering ,
to distinguish them from null scattering, which will be introduced in Section 11.2.1.

The probability of an out-scattering event occurring per unit distance is given by the scatter-
ing coefficient, σs. Similar to absorption, the reduction in radiance along a differential length
dt due to out scattering is given by

dLo(p, ω) = −σs(p, ω) Li(p, −ω) dt.

The total reduction in radiance due to absorption and out scattering is given by the sum σa +
σs. This combined effect of absorption and out scattering is called attenuation or extinction.
The sum of these two coefficients is denoted by the attenuation coefficient σt:

σt(p, ω) = σa(p, ω) + σs(p, ω).

Two values related to the attenuation coefficient will be useful in the following. The first is
the single-scattering albedo, which is defined as

ρ(p, ω) = σs(p, ω)

σt(p, ω)
.

Under the assumptions of radiometry, the single-scattering albedo is always between 0 and 1.
It describes the probability of scattering (versus absorption) at a scattering event. The second
is the mean free path, 1/σt(p, ω), which gives the average distance that a ray travels in a
medium with attenuation coefficient σt(p, ω) before interacting with a particle.

11.1.4 IN SCATTERING

While out scattering reduces radiance along a ray due to scattering in different directions,
in scattering accounts for increased radiance due to scattering from other directions (Fig-
ure 11.7). Figure 11.8 shows the effect of in scattering with the cloud model. There is no
absorption there, corresponding to a single scattering albedo of 1. Light thus scatters many
times inside the cloud, giving it a very different appearance.

Assuming that the separation between particles is at least a few times the lengths of their radii,
it is possible to ignore inter-particle interactions when describing scattering at a particular lo-
cation. Under this assumption, the phase function p(ω, ω′) describes the angular distribution
of scattered radiation at a point; it is the volumetric analog to the BSDF. The BSDF analogy
is not exact, however. For example, phase functions have a normalization constraint: for all
ω, the condition



SECTION 11.1 V O L U M E S C A T T E R I N G P R O C E S S E S 703

Li(p, –ω) Lo(p, ω)

Figure 11.7: In scattering accounts for the increase in radiance along a ray due to scattering of light from
other directions. Radiance from outside the differential volume is scattered along the direction of the ray
and added to the incoming radiance.

(a)

(b)

Figure 11.8: In Scattering with the Cloud Model. For these scenes, there is no absorption and only
scattering, which gives a substantially different result than the clouds in Figure 11.2. (a) Relatively dense
cloud. (b) Thinner cloud. (Cloud model courtesy of Walt Disney Animation Studios.)

∫

S2
p(ω, ω′) dω′ = 1 (11.2)

must hold.2 This constraint means that phase functions are probability distributions for
scattering in a particular direction.

2 This difference is purely due to convention; the phase function could have equally well been defined to include
the albedo, like the BSDF.



704 V O L U M E S C A T T E R I N G CHAPTER 11

The total added radiance per unit distance due to in scattering is given by the source func-
tion Ls:

dLo(p, ω) = σt(p, ω) Ls(p, ω) dt.

It accounts for both volume emission and in scattering:

Ls(p, ω) = σa(p, ω)

σt(p, ω)
Le(p, ω) + σs(p, ω)

σt(p, ω)

∫

S2
p(p, ωi, ω) Li(p, ωi) dωi. (11.3)

The in-scattering portion of the source function is the product of the albedo and the amount
of added radiance at a point, which is given by the spherical integral of the product of incident
radiance and the phase function. Note that the source function is very similar to the scattering
equation, Equation (4.14); the main difference is that there is no cosine term since the phase
function operates on radiance rather than differential irradiance.

11.2 TRANSMITTANCE

The scattering processes in Section 11.1 are all specified in terms of their local effect at
points in space. However, in rendering, we are usually interested in their aggregate effects
on radiance along a ray, which usually requires transforming the differential equations to
integral equations that can be solved using Monte Carlo. The reduction in radiance between
two points on a ray due to extinction is a quantity that will often be useful; for example, we
will need to estimate this value to compute the attenuated radiance from a light source that
is incident at a point on a surface in scenes with participating media.

Given the attenuation coefficient σt, the differential equation that describes extinction,

dLo(p, ω)

dt
= −σt(p, ω) Li(p, −ω), (11.4)

can be solved to find the beam transmittance Tr, which gives the fraction of radiance that is
transmitted between two points:

Tr(p → p′) = e−
∫ d

0
σt(p+tω,ω) dt

, (11.5)

where d = ‖p − p′‖ is the distance between p and p′, and ω is the normalized direction
vector between them. Note that the transmittance is always between 0 and 1. Thus, if exitant
radiance from a point p on a surface in a given direction ω is given by Lo(p, ω), then after
accounting for extinction the incident radiance at another point p′ in direction −ω is

Tr(p → p′) Lo(p, ω).

This idea is illustrated in Figure 11.9.

Lo(p, ω)
p p′

Figure 11.9: The beam transmittance Tr(p → p′) gives the fraction of light transmitted from one point to
another, accounting for absorption and out scattering, but ignoring emission and in scattering. Given exitant
radiance at a point p in direction ω (e.g., reflected radiance from a surface), the radiance visible at another
point p′ along the ray is Tr(p → p′)Lo(p, ω).



SECTION 11.2 T R A N S M I T T A N C E 705

Figure 11.10: Shadow-Casting Volumetric Bunny. The bunny, which is modeled entirely with partici-
pating media, casts a shadow on the ground plane because it attenuates light from the sun (which is to the
left) on its way to the ground. (Bunny courtesy of the Stanford Computer Graphics Laboratory; volumetric
enhancement courtesy of the OpenVDB sample model repository.)

p p″
p′

Figure 11.11: A useful property of beam transmittance is that it is multiplicative: the transmittance
between points p and p′′ on a ray like the one shown here is equal to the transmittance from p to p′

times the transmittance from p′ to p′′ for all points p′ between p and p′′.

Not only is transmittance useful for modeling the attenuation of light within participating
media, but accounting for transmittance along shadow rays makes it possible to accurately
model shadowing on surfaces due to the effect of media; see Figure 11.10.

Two useful properties of beam transmittance are that transmittance from a point to itself is 1,
Tr(p → p) = 1, and in a vacuum σt = 0 and so Tr(p → p′) = 1 for all p′. Furthermore, if the
attenuation coefficient satisfies the directional symmetry σt(ω) = σt(−ω) or does not vary
with direction ω and only varies as a function of position, then the transmittance between
two points is the same in both directions:

Tr(p → p′) = Tr(p′ → p).

This property follows directly from Equation (11.5).

Another important property, true in all media, is that transmittance is multiplicative along
points on a ray:

Tr(p → p′′) = Tr(p → p′) Tr(p′ → p′′), (11.6)

for all points p′ between p and p′′ (Figure 11.11). This property is useful for volume scattering
implementations, since it makes it possible to incrementally compute transmittance at mul-
tiple points along a ray: transmittance from the origin to a point Tr(o → p) can be computed



706 V O L U M E S C A T T E R I N G CHAPTER 11

by taking the product of transmittance to a previous point Tr(o → p′) and the transmittance
of the segment between the previous and the current point Tr(p′ → p).

The negated exponent in the definition of Tr in Equation (11.5) is called the optical thickness
between the two points. It is denoted by the symbol τ :

τ (p → p′) =
∫ d

0
σt(p + tω, ω) dt.

In a homogeneous medium, σt is a constant, so the integral that defines τ is trivially evalu-
ated, giving Beer’s law:

Tr(p → p′) = e−σtd. (11.7)

It may appear that a straightforward application of Monte Carlo could be used to compute
the beam transmittance in inhomogeneous media. Equation (11.5) consists of a 1D integral
over a ray’s parametric t position that is then exponentiated; given a method to sample
distances along the ray t ′ according to some distribution p, one could evaluate the estimator:

e−
∫ d

0
σt(p+tω,ω) dt ≈ e

−
[

σt(p+t ′ω,ω)

p(t ′)

]

. (11.8)

However, even if the estimator in square brackets is an unbiased estimator of the optical
thickness along the ray, the estimate of transmittance is not unbiased and will actually under-
estimate its value: E[e−X] &= e−E[X]. (This state of affairs is explained by Jensen’s inequality
and the fact that e−x is a convex function.)

The error introduced by estimators of the form of Equation (11.8) decreases as error in
the estimate of the beam transmittance decreases. For many applications, this error may be
acceptable—it is still widespread practice in graphics to estimate τ in some manner, e.g., via
a Riemann sum, and then to compute the transmittance that way. However, it is possible to
derive an alternative equation for transmittance that allows unbiased estimation; that is the
approach used in pbrt.

First, we will consider the change in radiance between two points p and p′ along the ray.
Integrating Equation (11.4) and dropping the directional dependence of σt for notational
simplicity, we can find that

∫ d

0

dL(p + tω)

dt
dt = L(p′) − L(p) =

∫ d

0
−σt(p + tω) L(p + tω) dt, (11.9)

where, as before, d is the distance between p and p′ and ω is the normalized vector from p
to p′.

The transmittance is the fraction of the original radiance, and so Tr(p → p′) = L(p′)/L(p).
Thus, if we divide Equation (11.9) by L(p) and rearrange terms, we can find that

Tr(p → p′) = 1 −
∫ d

0
σt(p + tω) Tr(p + tω → p′) dt. (11.10)

We have found ourselves with transmittance defined recursively in terms of an integral that
includes transmittance in the integrand; although this may seem to be making the problem
more complex than it was before, this definition makes it possible to apply Monte Carlo to
the integral and to compute unbiased estimates of transmittance. However, it is difficult to
sample this integrand well; in practice, estimates of it will have high variance. Therefore, the
following section will introduce an alternative formulation of it that is amenable to sampling
and makes a number of efficient solution techniques possible.



SECTION 11.2 T R A N S M I T T A N C E 707

(a) (b)

Figure 11.12: If the null-scattering coefficient is defined using a majorant σmaj as in Equation (11.11), then
it can be interpreted as taking (a) an inhomogeneous medium (dark circles) and (b) filling it with fictitious
particles (light circles) until it reaches a uniform density.

11.2.1 NULL SCATTERING

The key idea that makes it possible to derive a more easily sampled transmittance integral is
an approach known as null scattering . Null scattering is a mathematical formalism that can
be interpreted as introducing an additional type of scattering that does not correspond to any
type of physical scattering process but is specified so that it has no effect on the distribution
of light. In doing so, null scattering makes it possible to treat inhomogeneous media as if they
were homogeneous, which makes it easier to apply sampling algorithms to inhomogeneous
media. (In Chapter 14, we will see that it is a key foundation for volumetric light transport
algorithms beyond transmittance estimation.)

We will start by defining the null-scattering coefficient σn. Similar to the other scattering
coefficients, it gives the probability of a null-scattering event per unit distance traveled in
the medium. Here, we will define σn(p) via a constant majorant σmaj that is greater than or
equal to σa + σs at all points in the medium:3

σn(p, ω) = σmaj − σt(p, ω). (11.11)

Thus, the total scattering coefficient σa + σs + σn = σmaj is uniform throughout the medium.
(This idea is illustrated in Figure 11.12.)

With this definition of σn, we can rewrite Equation (11.4) in terms of the majorant and the
null-scattering coefficient:

dLo(p, ω)

dt
= −(σmaj − σn(p, ω)) Li(p, −ω). (11.12)

We will not include the full derivation here, but just as with Equation (11.10), this equation
can be integrated over the segment of a ray and divided by the initial radiance L(p) to find
an equation for the transmittance. The result is:

Tr(p → p′) = e−σmajd +
∫ d

0
e−σmajt σn(p + tω) Tr(p + tω → p′) dt. (11.13)

Note that with this expression of transmittance and a homogeneous medium, σn = 0 and
the integral disappears. The first term then corresponds to Beer’s law. For inhomogeneous

3 The attentive reader will note that for some of the following Monte Carlo estimators based on null scattering,
there is no mathematical requirement that σn must be positive and that thus, the so-called majorant is not
necessarily greater than or equal to σa + σs. It turns out that Monte Carlo estimators that include negative σn
values tend to have high variance, so in practice actual majorants are used.



SampleExponential() 1003

708 V O L U M E S C A T T E R I N G CHAPTER 11

media, the first term can be seen as computing an underestimate of the true transmittance,
where the integral then accounts for the rest of it.

To compute Monte Carlo estimates of Equation (11.13), we would like to sample a distance
t ′ from some distribution that is proportional to the integrand and then apply the regular
Monte Carlo estimator. A convenient sampling distribution is the probability density func-
tion (PDF) of the exponential distribution that is derived in Section A.4.2. In this case, the
PDF associated with e−σmajt is

pmaj(t) = σmaj e−σmajt

and a corresponding sampling recipe is available via the SampleExponential() function.

Because pmaj is nonzero over the range [0, ∞), the sampling algorithm will sometimes
generate samples t ′ > d , which may seem to be undesirable. However, although we could
define a PDF for the exponential function limited to [0, d], sampling from pmaj leads to
a simple way to terminate the recursive evaluation of transmittance. To see why, consider
rewriting the second term of Equation (11.13) as the sum of two integrals that cover the
range [0, ∞):

∫ d

0
e−σmajt σn(p + tω) Tr(p + tω → p′) dt +

∫ ∞

d
0 dt. (11.14)

If the Monte Carlo estimator is applied to this sum, we can see that the value of t ′ with respect
to d determines which integrand is evaluated and thus that sampling t ′ > d can be conve-
niently interpreted as a condition for ending the recursive estimation of Equation (11.13).

Given the decision to sample from pmaj, perhaps the most obvious approach for estimating
the value of Equation (11.13) is to sample t ′ in this way and to directly apply the Monte Carlo
estimator, which gives

Tr(p → p′) ≈ e−σmajd +
{

σn(p+t ′ω)
σmaj

Tr(p + t ′ω → p′) t ′ < d

0 otherwise.
(11.15)

This estimator is known as the next-flight estimator. It has the advantage that it has zero
variance for homogeneous media, although interestingly it is often not as efficient as other
estimators for inhomogeneous media.

Other estimators randomly choose between the two terms of Equation (11.13) and only
evaluate one of them. If we define pe as the discrete probability of evaluating the first term,
transmittance can be estimated by

Tr(p → p′) ≈






e−σmajd

pe
with probability pe

1
1−pe

∫ d
0 e−σmajt σn(p + tω) Tr(p + tω → p′) dt otherwise.

(11.16)

The ratio tracking estimator is the result from setting pe = e−σmajd . Then, the first case of
Equation (11.16) yields a value of 1. We can further combine the choice between the two
cases with sampling t ′ using the fact that the probability that t ′ > d is equal to e−σmajd . (This
can be seen using pmaj’s cumulative distribution function (CDF), Equation (A.1).) After
simplifying, the resulting estimator works out to be:

Tr(p → p′) ≈
{

1 t ′ > d
σn(p+t ′ω)

σmaj
Tr(p + t ′ω → p′) otherwise. (11.17)

If the recursive evaluations are expanded out, ratio tracking leads to an estimator of the form



SampleExponential() 1003

SECTION 11.3 P H A S E F U N C T I O N S 709

Tr(p → p′) ≈
n∏

i

σn(p + tiω)

σmaj
,

where ti are the series of t values that are sampled from pmaj and where successive ti values are
sampled starting from the previous one until one is sampled past the endpoint. Ratio tracking
is the technique that is implemented to compute transmittance in pbrt’s light transport
routines in Chapter 14.

A disadvantage of ratio tracking is that it continues to sample the medium even after the
transmittance has become very small. Russian roulette can be used to terminate recursive
evaluation to avoid this problem. If the Russian roulette termination probability at each
sampled point is set to be equal to the ratio of σn and σmaj, then the scaling cancels and
the estimator becomes

Tr(p → p′) ≈






1 t ′ > d

Tr(p + t ′ω → p′) t ′ ≤ d and with probability σn(p+t ′ω)
σmaj

0 otherwise.

(11.18)

Thus, recursive estimation of transmittance continues either until termination due to Rus-
sian roulette or until the sampled point is past the endpoint. This approach is the track-length
transmittance estimator, also known as delta tracking .

A physical interpretation of delta tracking is that it randomly decides whether the ray in-
teracts with a true particle or a fictitious particle at each scattering event. Interactions with
fictitious particles (corresponding to null scattering) are ignored and the algorithm contin-
ues, restarting from the sampled point. Interactions with true particles cause extinction, in
which case 0 is returned. If a ray makes it through the medium without extinction, the value 1
is returned.

Delta tracking can also be used to sample positions t along a ray with probability propor-
tional to σt(t)Tr(t). The algorithm is given by the following pseudocode, which assumes that
the function u() generates a uniform random number between 0 and 1 and where the recur-
sion has been transformed into a loop:

optional<Point> DeltaTracking(Point p, Vector w, Float sigma_maj, Float d) {
Float t = SampleExponential(u(), sigma_maj);
while (t < d) {

Float sigma_n = /* evaluate sigma_n at p + t * w */;
if (u() < sigma_n / sigma_maj)

t += SampleExponential(u(), sigma_maj);
else

return p + t * w;
}
return {}; /* no sample before d */

}

11.3 PHASE FUNCTIONS

Just as there is a wide variety of BSDF models that describe scattering from surfaces, many
phase functions have also been developed. These range from parameterized models (which
can be used to fit a function with a small number of parameters to measured data) to
analytic models that are based on deriving the scattered radiance distribution that results
from particles with known shape and material (e.g., spherical water droplets).



Float 23

HGPhaseFunction 713

TaggedPointer 1073

Vector3f 86

710 V O L U M E S C A T T E R I N G CHAPTER 11

In most naturally occurring media, the phase function is a 1D function of the angle θ between
the two directions ωo and ωi; these phase functions are often written as p(cos θ). Media
with this type of phase function are called isotropic or symmetric because their response to
incident illumination is (locally) invariant under rotations. In addition to being normalized,
an important property of naturally occurring phase functions is that they are reciprocal: the
two directions can be interchanged and the phase function’s value remains unchanged. Note
that symmetric phase functions are trivially reciprocal because cos(−θ) = cos(θ).

In anisotropic media that consist of particles arranged in a coherent structure, the phase
function can be a 4D function of the two directions, which satisfies a more involved kind
of reciprocity relation. Examples of this are crystals or media made of coherently oriented
fibers; the “Further Reading” discusses these types of media further.

In a slightly confusing overloading of terminology, phase functions themselves can be
isotropic or anisotropic as well. Thus, we might have an anisotropic phase function in an
isotropic medium. An isotropic phase function describes equal scattering in all directions
and is thus independent of either of the two directions. Because phase functions are normal-
ized, there is only one such function:

p(ωo, ωi) = 1

4π
.

The PhaseFunction class defines the PhaseFunction interface. Only a single phase function is
currently provided in pbrt, but we have used the TaggedPointer machinery to make it easy
to add others. Its implementation is in the file base/medium.h.

〈PhaseFunction Definition〉 ≡
class PhaseFunction : public TaggedPointer<HGPhaseFunction> {

public:
〈PhaseFunction Interface 710〉

};

The p() method returns the value of the phase function for the given pair of directions.
As with BSDFs, pbrt uses the convention that the two directions both point away from the
point where scattering occurs; this is a different convention from what is usually used in the
scattering literature (Figure 11.13).

〈PhaseFunction Interface〉 ≡ 710

Float p(Vector3f wo, Vector3f wi) const;

It is also useful to be able to draw samples from the distribution described by a phase func-
tion. PhaseFunction implementations therefore must provide a Sample_p() method, which

θ
ω′

ω

Figure 11.13: Phase functions in pbrt are implemented with the convention that both the incident direction
and the outgoing direction point away from the point where scattering happens. This is the same convention
that is used for BSDFs in pbrt but is different from the convention in the scattering literature, where the
incident direction generally points toward the scattering point. The angle between the two directions is
denoted by θ .



Float 23

Inv4Pi 1033

PhaseFunctionSample 711

Point2f 92

SafeSqrt() 1034

Sqr() 1034

Vector3f 86

SECTION 11.3 P H A S E F U N C T I O N S 711

samples an incident direction ωi given the outgoing direction ωo and a sample value in
[0, 1)2.

〈PhaseFunction Interface〉 +≡ 710

pstd::optional<PhaseFunctionSample> Sample_p(Vector3f wo, Point2f u) const;

Phase function samples are returned in a structure that stores the phase function’s value p,
the sampled direction wi, and the PDF pdf.

〈PhaseFunctionSample Definition〉 ≡
struct PhaseFunctionSample {

Float p;
Vector3f wi;
Float pdf;

};

An accompanying PDF() method returns the value of the phase function sampling PDF for
the provided directions.

〈PhaseFunction Interface〉 +≡ 710

Float PDF(Vector3f wo, Vector3f wi) const;

11.3.1 THE HENYEY–GREENSTEIN PHASE FUNCTION

A widely used phase function was developed by Henyey and Greenstein (1941). This phase
function was specifically designed to be easy to fit to measured scattering data. A single
parameter g (called the asymmetry parameter) controls the distribution of scattered light:4

pHG(cos θ) = 1

4π

1 − g2

(1 + g2 + 2g(cos θ))3/2
.

The HenyeyGreenstein() function implements this computation.

〈Scattering Inline Functions〉 +≡
Float HenyeyGreenstein(Float cosTheta, Float g) {

Float denom = 1 + Sqr(g) + 2 * g * cosTheta;
return Inv4Pi * (1 - Sqr(g)) / (denom * SafeSqrt(denom));

}

The asymmetry parameter g in the Henyey–Greenstein model has a precise meaning. It is
the integral of the product of the given phase function and the cosine of the angle between
ω′ and ω and is referred to as the mean cosine. Given an arbitrary phase function p, the value
of g can be computed as5

g =
∫

S2
p(−ω, ω′)(ω . ω′) dω′ = 2π

∫ π

0
p(−cos θ) cos θ sin θ dθ. (11.19)

Thus, an isotropic phase function gives g = 0, as expected.

Any number of phase functions can satisfy this equation; the g value alone is not enough
to uniquely describe a scattering distribution. Nevertheless, the convenience of being able to
easily convert a complex scattering distribution into a simple parameterized model is often
more important than this potential loss in accuracy.

4 Note that the sign of the 2g(cos θ) term in the denominator is the opposite of the sign used in the scattering
literature. This difference is due to our use of the same direction convention for BSDFs and phase functions.

5 Once more, there is a sign difference compared to the radiative transfer literature: the first argument to p is
negated due to our use of the same direction convention for BSDFs and phase functions.



712 V O L U M E S C A T T E R I N G CHAPTER 11

–0.5 0.5

0.25

–0.25

g = –0.25
g = 0.7

1.0 1.5

Figure 11.14: Plots of the Henyey–Greenstein Phase Function for Asymmetry g Parameters −0.25
and 0.7. Negative g values describe phase functions that primarily scatter light back in the incident direction,
and positive g values describe phase functions that primarily scatter light forward in the direction it was
already traveling (here, along the +x axis).

Figure 11.15: Ganesha model filled with participating media rendered with (left) strong backward
scattering (g = −0.9) and (right) strong forward scattering (g = 0.9). Because most of the light comes from
a light source behind the objects, forward scattering leads to more light reaching the camera in this case.

More complex phase functions that are not described well with a single asymmetry parameter
can often be modeled by a weighted sum of phase functions like Henyey–Greenstein, each
with different parameter values:

p(ω, ω′) =
n∑

i=1

wi pi(ω → ω′),

where the weights wi sum to one to maintain normalization. This generalization is not
provided in pbrt but would be easy to add.

Figure 11.14 shows plots of the Henyey–Greenstein phase function with varying asymmetry
parameters. The value of g for this model must be in the range (−1, 1). Negative values of
g correspond to back-scattering , where light is mostly scattered back toward the incident
direction, and positive values correspond to forward-scattering. The greater the magnitude
of g, the more scattering occurs close to the ω or −ω directions (for back-scattering and
forward-scattering, respectively). See Figure 11.15 to compare the visual effect of forward-
and back-scattering.



Dot() 89

Float 23

HenyeyGreenstein() 711

HGPhaseFunction 713

PhaseFunction 710

Point2f 92

Sqr() 1034

Vector3f 86

SECTION 11.3 P H A S E F U N C T I O N S 713

The HGPhaseFunction class implements the Henyey–Greenstein model in the context of the
PhaseFunction interface.

〈HGPhaseFunction Definition〉 ≡
class HGPhaseFunction {

public:
〈HGPhaseFunction Public Methods 713〉

private:
〈HGPhaseFunction Private Members 713〉

};

Its only parameter is g, which is provided to the constructor and stored in a member variable.

〈HGPhaseFunction Public Methods〉 ≡ 713

HGPhaseFunction(Float g) : g(g) {}

〈HGPhaseFunction Private Members〉 ≡ 713

Float g;

Evaluating the phase function is a simple matter of calling the HenyeyGreenstein() function.

〈HGPhaseFunction Public Methods〉 +≡ 713

Float p(Vector3f wo, Vector3f wi) const {
return HenyeyGreenstein(Dot(wo, wi), g);

}

It is possible to sample directly from the Henyey–Greenstein phase function’s distribution.
This operation is provided via a stand-alone utility function. Because the sampling algorithm
is exact and because the Henyey–Greenstein phase function is normalized, the PDF is equal
to the phase function’s value for the sampled direction.

〈Sampling Function Definitions〉 +≡
Vector3f SampleHenyeyGreenstein(Vector3f wo, Float g,

Point2f u, Float *pdf) {
〈Compute cos θ for Henyey–Greenstein sample 713〉
〈Compute direction wi for Henyey–Greenstein sample 714〉
if (pdf) *pdf = HenyeyGreenstein(cosTheta, g);
return wi;

}

The PDF for the Henyey–Greenstein phase function is separable into θ and φ components,
with p(φ) = 1/(2π) as usual. The main task is to sample cos θ . With pbrt’s convention for
the orientation of direction vectors, the distribution for θ is

cos θ = − 1

2g



1 + g2 −
(

1 − g2

1 + g − 2gξ

)2




if g &= 0; otherwise, cos θ = 1 − 2ξ gives a uniform sampling over the sphere of directions.

〈Compute cos θ for Henyey–Greenstein sample〉 ≡ 713

Float cosTheta;
if (std::abs(g) < 1e-3f)

cosTheta = 1 - 2 * u[0];
else

cosTheta = -1 / (2 * g) *
(1 + Sqr(g) - Sqr((1 - Sqr(g)) / (1 + g - 2 * g * u[0])));



CloudMedium 714

Float 23

Frame 133

Frame::FromLocal() 134

Frame::FromZ() 134

GridMedium 728

HGPhaseFunction::p() 713

HomogeneousMedium 720

NanoVDBMedium 714

PhaseFunctionSample 711

Pi 1033

Point2f 92

RGBGridMedium 731

SafeSqrt() 1034

SampleHenyeyGreenstein() 713

SphericalDirection() 106

Sqr() 1034

TaggedPointer 1073

Vector3f 86

714 V O L U M E S C A T T E R I N G CHAPTER 11

The (cos θ, φ) values specify a direction with respect to a coordinate system where wo is along
the +z axis. Therefore, it is necessary to transform the sampled vector to wo’s coordinate
system before returning it.

〈Compute direction wi for Henyey–Greenstein sample〉 ≡ 713

Float sinTheta = SafeSqrt(1 - Sqr(cosTheta));
Float phi = 2 * Pi * u[1];
Frame wFrame = Frame::FromZ(wo);
Vector3f wi = wFrame.FromLocal(SphericalDirection(sinTheta, cosTheta, phi));

The HGPhaseFunction sampling method is now easily implemented.

〈HGPhaseFunction Public Methods〉 +≡ 713

pstd::optional<PhaseFunctionSample> Sample_p(Vector3f wo, Point2f u) const {
Float pdf;
Vector3f wi = SampleHenyeyGreenstein(wo, g, u, &pdf);
return PhaseFunctionSample{pdf, wi, pdf};

}

Because sampling is exact and phase functions are normalized, its PDF() method just evalu-
ates the phase function for the given directions.

〈HGPhaseFunction Public Methods〉 +≡ 713

Float PDF(Vector3f wo, Vector3f wi) const { return p(wo, wi); }

11.4 MEDIA

Implementations of the Medium interface provide various representations of volumetric scat-
tering properties in a region of space. In a complex scene, there may be multiple Medium
instances, each representing different types of scattering in different parts of the scene. For
example, an outdoor lake scene might have one Medium to model atmospheric scattering, an-
other to model mist rising from the lake, and a third to model particles suspended in the
water of the lake.

The Medium interface is also defined in the file base/media.h.

〈Medium Definition〉 ≡
class Medium : public TaggedPointer<〈Medium Types 714〉> {

public:
〈Medium Interface 717〉
〈Medium Public Methods〉

};

pbrt provides five medium implementations. The first three will be discussed in the book, but
CloudMedium is only included in the online edition of the book and the last, NanoVDBMedium,
will not be presented at all. (It provides support for using volumes defined in the NanoVDB
format in pbrt. As elsewhere, we avoid discussion of the use of third-party APIs in the book
text.)

〈Medium Types〉 ≡ 714

HomogeneousMedium, GridMedium, RGBGridMedium, CloudMedium, NanoVDBMedium

Before we get to the specification of the methods in the interface, we will describe a few details
related to how media are represented in pbrt.



Camera 206

Light 740

Medium 714

MediumInterface 715

MediumInterface::inside 715

MediumInterface::outside 715

Primitive 398

Primitive::Intersect() 398

SurfaceInteraction 138

SurfaceInteraction::
SetIntersectionProperties()
398

SECTION 11.4 M E D I A 715

The spatial distribution and extent of media in a scene is defined by associating Medium
instances with the camera, lights, and primitives in the scene. For example, Cameras store
a Medium that represents the medium that the camera is inside. Rays leaving the camera
then have the Medium associated with them. In a similar fashion, each Light stores a Medium
representing its medium. A nullptr value can be used to indicate a vacuum (where no
volumetric scattering occurs).

In pbrt, the boundary between two different types of scattering media is always represented
by the surface of a primitive. Rather than storing a single Medium like lights and cameras each
do, primitives may store a MediumInterface, which stores the medium on each side of the
primitive’s surface.

〈MediumInterface Definition〉 ≡
struct MediumInterface {

〈MediumInterface Public Methods 715〉
〈MediumInterface Public Members 715〉

};

MediumInterface holds two Mediums, one for the interior of the primitive and one for the
exterior.

〈MediumInterface Public Members〉 ≡ 715

Medium inside, outside;

Specifying the extent of participating media in this way does allow the user to specify im-
possible or inconsistent configurations. For example, a primitive could be specified as having
one medium outside of it, and the camera could be specified as being in a different medium
without there being a MediumInterface between the camera and the surface of the primitive.
In this case, a ray leaving the primitive toward the camera would be treated as being in a dif-
ferent medium from a ray leaving the camera toward the primitive. In turn, light transport
algorithms would be unable to compute consistent results. For pbrt’s purposes, we think it is
reasonable to expect that the user will be able to specify a consistent configuration of media
in the scene and that the added complexity of code to check this is not worthwhile.

A MediumInterface can be initialized with either one or two Medium values. If only one is
provided, then it represents an interface with the same medium on both sides.

〈MediumInterface Public Methods〉 ≡ 715

MediumInterface(Medium medium) : inside(medium), outside(medium) {}
MediumInterface(Medium inside, Medium outside)

: inside(inside), outside(outside) {}

The IsMediumTransition() method indicates whether a particular MediumInterface instance
marks a transition between two distinct media.

〈MediumInterface Public Methods〉 +≡ 715

bool IsMediumTransition() const { return inside != outside; }

With this context in hand, we can now provide a missing piece in the implementation
of the SurfaceInteraction::SetIntersectionProperties() method—the implementation of
the 〈Set medium properties at surface intersection〉 fragment. (Recall that this method is called
by Primitive Intersect() methods when an intersection has been found.)

Instead of simply copying the value of the primitive’s MediumInterface into the Surface
Interaction, it follows a slightly different approach and only uses this MediumInterface if it
specifies a proper transition between participating media. Otherwise, the Ray::medium field



DielectricMaterial 679

Interaction::medium 138

Interaction::mediumInterface
138

Material 674

Medium 714

MediumInterface::inside 715

MediumInterface::
IsMediumTransition()
715

MediumInterface::outside 715

SurfaceInteraction 138

SurfaceInteraction::GetBSDF()
682

Vector3f 86

716 V O L U M E S C A T T E R I N G CHAPTER 11

takes precedence. Setting the SurfaceInteraction’s mediumInterface field in this way greatly
simplifies the specification of scenes containing media: in particular, it is not necessary to
provide corresponding Mediums at every scene surface that is in contact with a medium.
Instead, only non-opaque surfaces that have different media on each side require an explicit
medium interface. In the simplest case where a scene containing opaque objects is filled with
a participating medium (e.g., haze), it is enough for the camera and light sources to have
their media specified accordingly.

〈Set medium properties at surface intersection〉 ≡ 398

if (primMediumInterface && primMediumInterface->IsMediumTransition())
mediumInterface = primMediumInterface;

else
medium = rayMedium;

Once mediumInterface or medium is set, it is possible to implement methods that return
information about the local media. For surface interactions, a direction w can be specified
to select a side of the surface. If a MediumInterface has been stored, the dot product with
the surface normal determines whether the inside or outside medium should be returned.
Otherwise, medium is returned.

〈Interaction Public Methods〉 +≡ 136

Medium GetMedium(Vector3f w) const {
if (mediumInterface)

return Dot(w, n) > 0 ? mediumInterface->outside :
mediumInterface->inside;

return medium;
}

For interactions that are known to be inside participating media, another variant of Get
Medium() that does not take the irrelevant outgoing direction vector is available. In this case,
if a MediumInterface * has been stored, it should point to the same medium for both “inside”
and “outside.”

〈Interaction Public Methods〉 +≡ 136

Medium GetMedium() const {
return mediumInterface ? mediumInterface->inside : medium;

}

Primitives associated with shapes that represent medium boundaries generally have a
Material associated with them. For example, the surface of a lake might use an instance of
DielectricMaterial to describe scattering at the lake surface, which also acts as the boundary
between the rising mist’s Medium and the lake water’s Medium. However, sometimes we only
need the shape for the boundary surface that it provides to delimit a participating medium
boundary and we do not want to see the surface itself. For example, the medium representing
a cloud might be bounded by a box made of triangles where the triangles are only there to
delimit the cloud’s extent and should not otherwise affect light passing through them.

While such a surface that disappears and does not affect ray paths could be accurately de-
scribed by a BTDF that represents perfect specular transmission with the same index of
refraction on both sides, dealing with such surfaces places extra burden on the Integrators
(not all of which handle this type of specular light transport well). Therefore, pbrt allows
such surfaces to have a Material that is nullptr, indicating that they do not affect light pass-
ing through them; in turn, SurfaceInteraction::GetBSDF() will return an unset BSDF. The
light transport routines then do not worry about light scattering from such surfaces and only



Medium 714

MediumProperties 718

Point3f 92

SampledWavelengths 173

SECTION 11.4 M E D I A 717

Figure 11.16: Scattering Media inside the Ganesha. Both models have the same isotropic homoge-
neous scattering media inside of them. On the left, the Material is nullptr, which indicates that the sur-
face should be ignored by rays and is only used to delineate a participating medium’s extent. On the right,
the model’s surface has a dielectric interface that both makes the interface visible and scatters some of
the incident light, making the interior darker.

account for changes in the current medium at them. For an example of the difference that
scattering at the surface makes, see Figure 11.16, which has two instances of the Ganesha
model filled with scattering media; one has a scattering surface at the boundary and the other
does not.

11.4.1 Medium INTERFACE

Medium implementations must include three methods. The first is IsEmissive(), which indi-
cates whether they include any volumetric emission. This method is used solely so that pbrt
can check if a scene has been specified without any light sources and print an informative
message if so.

〈Medium Interface〉 ≡ 714

bool IsEmissive() const;

The SamplePoint() method returns information about the scattering and emission proper-
ties of the medium at a specified rendering-space point in the form of a MediumProperties
object.

〈Medium Interface〉 +≡ 714

MediumProperties SamplePoint(Point3f p,
const SampledWavelengths &lambda) const;

MediumProperties is a simple structure that wraps up the values that describe scattering
and emission at a point inside a medium. When initialized to their default values, its
member variables together indicate no scattering or emission. Thus, implementations of
SamplePoint() can directly return a MediumProperties with no further initialization if the
specified point is outside of the medium’s spatial extent.



Float 23

HomogeneousMedium 720

PhaseFunction 710

RayMajorantIterator 719

RayMajorantSegment 718

SampledSpectrum 171

ScratchBuffer 1078

718 V O L U M E S C A T T E R I N G CHAPTER 11

〈MediumProperties Definition〉 ≡
struct MediumProperties {

SampledSpectrum sigma_a, sigma_s;
PhaseFunction phase;
SampledSpectrum Le;

};

The third method that Medium implementations must implement is SampleRay(), which pro-
vides information about the medium’s majorant σmaj along the ray’s extent. It does so using
one or more RayMajorantSegment objects. Each describes a constant majorant over a segment
of a ray.

〈RayMajorantSegment Definition〉 ≡
struct RayMajorantSegment {

Float tMin, tMax;
SampledSpectrum sigma_maj;

};

Some Medium implementations have a single medium-wide majorant (e.g., Homogeneous
Medium), though for media where the scattering coefficients vary significantly over their
extent, it is usually better to have distinct local majorants that bound σt over smaller regions.
These tighter majorants can improve rendering performance by reducing the frequency of
null scattering when sampling interactions along a ray.

The number of segments along a ray is variable, depending on both the ray’s geometry and
how the medium discretizes space. However, we would not like to return variable-sized ar-
rays of RayMajorantSegments from SampleRay() method implementations. Although dynamic
memory allocation to store them could be efficiently handled using a ScratchBuffer, an-
other motivation not to immediately return all of them is that often not all the RayMajorant
Segments along the ray are needed; if the ray path terminates or scattering occurs along the
ray, then any additional RayMajorantSegments past the corresponding point would be unused
and their initialization would be wasted work.

Therefore, the RayMajorantIterator interface provides a mechanism for Medium implemen-
tations to return RayMajorantSegments one at a time as they are needed. There is a single
method in this interface: Next(). Implementations of it should return majorant segments
from the front to the back of the ray with no overlap in t between segments, though it
may skip over ranges of t corresponding to regions of space where there is no scattering.
(See Figure 11.17.) After it has returned all segments along the ray, an unset optional value
should be returned. Thanks to this interface, different Medium implementations can generate
RayMajorantSegments in different ways depending on their internal medium representation.

t0 t1

σt

σmaj

Figure 11.17: RayMajorantIterator implementations return a series of segments in parametric t along
a ray where each segment has a majorant that is an upper bound of the medium’s σt value along the
segment. Implementations are free to specify segments of varying lengths and to skip regions of space
with no scattering, though they must provide segments in front-to-back order.



DDAMajorantIterator 723

Float 23

HomogeneousMajorantIterator
721

Material::GetBSDF() 675

Material::GetBxDF() 674

Medium 714

Ray 95

RayMajorantIterator 719

RayMajorantSegment 718

SampledWavelengths 173

ScratchBuffer 1078

TaggedPointer 1073

TaggedPointer::DispatchCPU()
1076

SECTION 11.4 M E D I A 719

〈RayMajorantIterator Definition〉 ≡
class RayMajorantIterator : public TaggedPointer<HomogeneousMajorantIterator,

DDAMajorantIterator> {
public:

pstd::optional<RayMajorantSegment> Next();
};

Turning back now to the SampleRay() interface method: in Chapters 14 and 15 we will
find it useful to know the type of RayMajorantIterator that is associated with a specific
Medium type. We can then declare the iterator as a local variable that is stored on the stack,
which improves efficiency both from avoiding dynamic memory allocation for it and from
allowing the compiler to more easily store it in registers. Therefore, pbrt requires that Medium
implementations include a local type definition for MajorantIterator in their class definition
that gives the type of their RayMajorantIterator. Their SampleRay() method itself should
then directly return their majorant iterator type. Concretely, a Medium implementation should
include declarations like the following in its class definition, with the ellipsis replaced with
its RayMajorantIterator type.

using MajorantIterator = ...;
MajorantIterator SampleRay(Ray ray, Float tMax,

const SampledWavelengths &lambda) const;

(The form of this type and method definition is similar to the Material::GetBxDF() methods
in Section 10.5.)

For cases where the medium’s type is not known at compile time, the Medium class itself
provides the implementation of a different SampleRay() method that takes a ScratchBuffer,
uses it to allocate the appropriate amount of storage for the medium’s ray iterator, and
then calls the Medium’s SampleRay() method implementation to initialize it. The returned
RayMajorantIterator can then be used to iterate over the majorant segments.

The implementation of this method uses the same trick that Material::GetBSDF() does: the
TaggedPointer’s dynamic dispatch capabilities are used to automatically generate a separate
call to the provided lambda function for each medium type, with the medium parameter
specialized to be of the Medium’s concrete type.

〈Medium Sampling Function Definitions〉 ≡
RayMajorantIterator Medium::SampleRay(Ray ray, Float tMax,

const SampledWavelengths &lambda, ScratchBuffer &buf) const {
auto sample = [ray,tMax,lambda,&buf](auto medium) {

〈Return RayMajorantIterator for medium’s majorant iterator 720〉
};
return DispatchCPU(sample);

}

The Medium passed to the lambda function arrives as a reference to a pointer to the medium
type; those are easily removed to get the basic underlying type. From it, the iterator type
follows from the MajorantIterator type declaration in the associated class. In turn, storage
can be allocated for the iterator type and it can be initialized. Since the returned value is
of the RayMajorantIterator interface type, the caller can proceed without concern for the
actual type.



DenselySampledSpectrum 167

DenselySampledSpectrum::
Sample()
167

HGPhaseFunction 713

HomogeneousMajorantIterator
721

HomogeneousMedium::Le_spec
720

HomogeneousMedium::phase 720

HomogeneousMedium::
sigma_a_spec
720

HomogeneousMedium::
sigma_s_spec
720

MediumProperties 718

PiecewiseLinearSpectrum 168

Point3f 92

RayMajorantIterator 719

SampledSpectrum 171

SampledWavelengths 173

ScratchBuffer::Alloc() 1078

Spectrum 165

Spectrum::MaxValue() 166

Spectrum::Sample() 175

720 V O L U M E S C A T T E R I N G CHAPTER 11

〈Return RayMajorantIterator for medium’s majorant iterator〉 ≡ 719

using ConcreteMedium = typename std::remove_reference_t<decltype(*medium)>;
using Iter = typename ConcreteMedium::MajorantIterator;
Iter *iter = (Iter *)buf.Alloc(sizeof(Iter), alignof(Iter));
*iter = medium->SampleRay(ray, tMax, lambda);
return RayMajorantIterator(iter);

11.4.2 HOMOGENEOUS MEDIUM

The HomogeneousMedium is the simplest possible medium. It represents a region of space with
constant σa, σs, and Le values throughout its extent. It uses the Henyey–Greenstein phase
function to represent scattering in the medium, also with a constant g. Its definition is in the
files media.h and media.cpp. This medium was used for the images in Figures 11.15 and 11.16.

〈HomogeneousMedium Definition〉 ≡
class HomogeneousMedium {

public:
〈HomogeneousMedium Public Type Definitions 720〉
〈HomogeneousMedium Public Methods 720〉

private:
〈HomogeneousMedium Private Data 720〉

};

Its constructor (not included here) initializes the following member variables from provided
parameters. It takes spectral values in the general form of Spectrums but converts them to the
form of DenselySampledSpectrums. While this incurs a memory cost of a kilobyte or so for
each one, it ensures that sampling the spectrum will be fairly efficient and will not require,
for example, the binary search that PiecewiseLinearSpectrum uses. It is unlikely that there
will be enough distinct instances of HomogeneousMedium in a scene that this memory cost will
be significant.

〈HomogeneousMedium Private Data〉 ≡ 720

DenselySampledSpectrum sigma_a_spec, sigma_s_spec, Le_spec;
HGPhaseFunction phase;

Implementation of the IsEmissive() interface method is straightforward.

〈HomogeneousMedium Public Methods〉 ≡ 720

bool IsEmissive() const { return Le_spec.MaxValue() > 0; }

SamplePoint() just needs to sample the various constant scattering properties at the specified
wavelengths.

〈HomogeneousMedium Public Methods〉 +≡ 720

MediumProperties SamplePoint(Point3f p,
const SampledWavelengths &lambda) const {

SampledSpectrum sigma_a = sigma_a_spec.Sample(lambda);
SampledSpectrum sigma_s = sigma_s_spec.Sample(lambda);
SampledSpectrum Le = Le_spec.Sample(lambda);
return MediumProperties{sigma_a, sigma_s, &phase, Le};

}

SampleRay() uses the HomogeneousMajorantIterator class for its RayMajorantIterator.

〈HomogeneousMedium Public Type Definitions〉 ≡ 720

using MajorantIterator = HomogeneousMajorantIterator;



Float 23

HomogeneousMajorantIterator
721

HomogeneousMajorantIterator::
called
721

HomogeneousMajorantIterator::
seg
721

HomogeneousMedium::
sigma_a_spec
720

HomogeneousMedium::
sigma_s_spec
720

Ray 95

RayMajorantIterator 719

RayMajorantSegment 718

SampledSpectrum 171

SampledWavelengths 173

SampleExponential() 1003

Spectrum::Sample() 175

SECTION 11.4 M E D I A 721

There is no need for null scattering in a homogeneous medium and so a single RayMajorant
Segment for the ray’s entire extent suffices. HomogeneousMajorantIterator therefore stores
such a segment directly.

〈HomogeneousMajorantIterator Definition〉 ≡
class HomogeneousMajorantIterator {

public:
〈HomogeneousMajorantIterator Public Methods 721〉

private:
RayMajorantSegment seg;
bool called;

};

Its default constructor sets called to true and stores no segment; in this way, the case of a ray
missing a medium and there being no valid segment can be handled with a default-initialized
HomogeneousMajorantIterator.

〈HomogeneousMajorantIterator Public Methods〉 ≡ 721

HomogeneousMajorantIterator() : called(true) {}
HomogeneousMajorantIterator(Float tMin, Float tMax,

SampledSpectrum sigma_maj)
: seg{tMin, tMax, sigma_maj}, called(false) {}

If a segment was specified, it is returned the first time Next() is called. Subsequent calls return
an unset value, indicating that there are no more segments.

〈HomogeneousMajorantIterator Public Methods〉 +≡ 721

pstd::optional<RayMajorantSegment> Next() {
if (called) return {};
called = true;
return seg;

}

The implementation of HomogeneousMedium::SampleRay() is now trivial. Its only task is to
compute the majorant, which is equal to σt = σa + σs.

〈HomogeneousMedium Public Methods〉 +≡ 720

HomogeneousMajorantIterator SampleRay(
Ray ray, Float tMax, const SampledWavelengths &lambda) const {

SampledSpectrum sigma_a = sigma_a_spec.Sample(lambda);
SampledSpectrum sigma_s = sigma_s_spec.Sample(lambda);
return HomogeneousMajorantIterator(0, tMax, sigma_a + sigma_s);

}

11.4.3 DDA MAJORANT ITERATOR

Before moving on to the remaining two Medium implementations, we will describe another
RayMajorantIterator that is much more efficient than the HomogeneousMajorantIterator
when the medium’s scattering coefficients vary over its extent. To understand the problem
with a single majorant in this case, recall that the mean free path is the average distance
between scattering events. It is one over the attenuation coefficient and so the average t

step returned by a call to SampleExponential() given a majorant σmaj will be 1/σmaj. Now
consider a medium that has a σt = 1 almost everywhere but has σt = 100 in a small region.
If σmaj = 100 everywhere, then in the less dense region 99% of the sampled distances will be



Bounds3f 97

Float 23

MajorantGrid 722

MajorantGrid::res 722

MajorantGrid::voxels 722

Point3f 92

Point3i 92

SampledSpectrum 171

722 V O L U M E S C A T T E R I N G CHAPTER 11

null-scattering events and the ray will take steps that are 100 times shorter than it would take
if σmaj was 1. Rendering performance suffers accordingly.

This issue motivates using a data structure to store spatially varying majorants, which allows
tighter majorants and more efficient sampling operations. A variety of data structures have
been used for this problem; the “Further Reading” section has details. The remainder of
pbrt’s Medium implementations all use a simple grid where each cell stores a majorant over
the corresponding region of the volume. In turn, as a ray passes through the medium, it is
split into segments through this grid and sampled based on the local majorant.

More precisely, the local majorant is found with the combination of a regular grid of voxels
of scalar densities and a SampledSpectrum σt value. The majorant in each voxel is given by the
product of σt and the voxel’s density. The MajorantGrid class stores that grid of voxels.

〈MajorantGrid Definition〉 ≡
struct MajorantGrid {

〈MajorantGrid Public Methods 722〉
〈MajorantGrid Public Members 722〉

};

MajorantGrid just stores an axis-aligned bounding box for the grid, its voxel values, and its
resolution in each dimension.

〈MajorantGrid Public Members〉 ≡ 722

Bounds3f bounds;
pstd::vector<Float> voxels;
Point3i res;

The voxel array is indexed in the usual manner, with x values laid out consecutively in
memory, then y, and then z. Two simple methods handle the indexing math for setting and
looking up values in the grid.

〈MajorantGrid Public Methods〉 ≡ 722

Float Lookup(int x, int y, int z) const {
return voxels[x + res.x * (y + res.y * z)];

}
void Set(int x, int y, int z, Float v) {

voxels[x + res.x * (y + res.y * z)] = v;
}

Next, the VoxelBounds() method returns the bounding box corresponding to the specified
voxel in the grid. Note that the returned bounds are with respect to [0, 1]3 and not the bounds
member variable.

〈MajorantGrid Public Methods〉 +≡ 722

Bounds3f VoxelBounds(int x, int y, int z) const {
Point3f p0(Float(x) / res.x, Float(y) / res.y, Float(z) / res.z);
Point3f p1(Float(x+1) / res.x, Float(y+1) / res.y, Float(z+1) / res.z);
return Bounds3f(p0, p1);

}

Efficiently enumerating the voxels that the ray passes through can be done with a technique
that is similar in spirit to Bresenham’s classic line drawing algorithm, which incrementally
finds series of pixels that a line passes through using just addition and comparisons to step
from one pixel to the next. (This type of algorithm is known as a digital differential analyzer
(DDA)—hence the name of the DDAMajorantIterator.) The main difference between the ray



DDAMajorantIterator 723

Float 23

Infinity 361

MajorantGrid 722

Ray 95

SampledSpectrum 171

SECTION 11.4 M E D I A 723

stepping algorithm and Bresenham’s is that we would like to find all of the voxels that the
ray passes through, while Bresenham’s algorithm typically only turns on one pixel per row or
column that a line passes through.

〈DDAMajorantIterator Definition〉 ≡
class DDAMajorantIterator {

public:
〈DDAMajorantIterator Public Methods 723〉

private:
〈DDAMajorantIterator Private Members 723〉

};

After copying parameters passed to it to member variables, the constructor’s main task is to
compute a number of values that represent the DDA’s state.

〈DDAMajorantIterator Public Methods〉 ≡ 723

DDAMajorantIterator(Ray ray, Float tMin, Float tMax,
const MajorantGrid *grid, SampledSpectrum sigma_t)

: tMin(tMin), tMax(tMax), grid(grid), sigma_t(sigma_t) {
〈Set up 3D DDA for ray through the majorant grid 724〉

}

The tMin and tMax member variables store the parametric range of the ray for which majorant
segments are yet to be generated; tMin is advanced after each step. Their default values specify
a degenerate range, which causes a default-initialized DDAMajorantIterator to return no
segments when its Next() method is called.

〈DDAMajorantIterator Private Members〉 ≡ 723

SampledSpectrum sigma_t;
Float tMin = Infinity, tMax = -Infinity;
const MajorantGrid *grid;

Grid voxel traversal is handled by an incremental algorithm that tracks the current voxel and
the parametric t where the ray enters the next voxel in each direction. It successively takes
a step in the direction that has the smallest such t until the ray exits the grid or traversal is
halted. The values that the algorithm needs to keep track of are the following:

1. The integer coordinates of the voxel currently being considered, voxel.
2. The parametric t position along the ray where it makes its next crossing into another

voxel in each of the x, y, and z directions, nextCrossingT (Figure 11.18).
3. The change in the current voxel coordinates after a step in each direction (1 or −1),

stored in step.
4. The parametric distance along the ray between voxels in each direction, deltaT.
5. The coordinates of the voxel after the last one the ray passes through when it exits the

grid, voxelLimit.

The first two values are updated as the ray steps through the grid, while the last three are
constant for each ray. All are stored in member variables.

〈DDAMajorantIterator Private Members〉 +≡ 723

Float nextCrossingT[3], deltaT[3];
int step[3], voxelLimit[3], voxel[3];



Bounds3::Diagonal() 101

Bounds3::Offset() 102

DDAMajorantIterator::grid
723

MajorantGrid::bounds 722

Point3f 92

Ray 95

Ray::d 95

Ray::o 95

Vector3f 86

724 V O L U M E S C A T T E R I N G CHAPTER 11

tmin

nextCrossingT[0]

nextCrossingT[1]

deltaT[0]

Figure 11.18: Stepping a Ray through a Voxel Grid. The parametric distance along the ray to the point
where it crosses into the next voxel in the x direction is stored in nextCrossingT[0], and similarly for the
y and z directions (not shown). When the ray crosses into the next x voxel, for example, it is immediately
possible to update the value of nextCrossingT[0] by adding a fixed value, the voxel width in x divided by
the ray’s x direction, deltaT[0].

For the DDA computations, we will transform the ray to a coordinate system where the grid
spans [0, 1]3, giving the ray rayGrid. Working in this space simplifies some of the calculations
related to the DDA.6

〈Set up 3D DDA for ray through the majorant grid〉 ≡ 723

Vector3f diag = grid->bounds.Diagonal();
Ray rayGrid(Point3f(grid->bounds.Offset(ray.o)),

Vector3f(ray.d.x / diag.x, ray.d.y / diag.y, ray.d.z / diag.z));
Point3f gridIntersect = rayGrid(tMin);
for (int axis = 0; axis < 3; ++axis) {

〈Initialize ray stepping parameters for axis 724〉
}

Some of the DDA state values for each dimension are always computed in the same way, while
others depend on the sign of the ray’s direction in that dimension.

〈Initialize ray stepping parameters for axis〉 ≡ 724

〈Compute current voxel for axis and handle negative zero direction 725〉
if (rayGrid.d[axis] >= 0) {

〈Handle ray with positive direction for voxel stepping 725〉
} else {

〈Handle ray with negative direction for voxel stepping 725〉
}

The integer coordinates of the initial voxel are easily found using the grid intersection point.
Because it is with respect to the [0, 1]3 cube, all that is necessary is to scale by the resolution
in each dimension and take the integer component of that value. It is, however, important to
clamp this value to the valid range in case round-off error leads to an out-of-bounds value.

6 If you are wondering why it is correct to use the value of tMin that was computed using ray with rayGrid to
find the point gridIntersect, review Section 6.1.4 and carefully consider how the components of rayGrid are
initialized.



Clamp() 1033

DDAMajorantIterator::deltaT
723

DDAMajorantIterator::grid
723

DDAMajorantIterator::
nextCrossingT
723

DDAMajorantIterator::step
723

DDAMajorantIterator::voxel
723

DDAMajorantIterator::
voxelLimit
723

Float 23

MajorantGrid::res 722

Ray::d 95

SECTION 11.4 M E D I A 725

Next, deltaT is found by dividing the voxel width, which is one over its resolution since
we are working in [0, 1]3, by the absolute value of the ray’s direction component for the
current axis. (The absolute value is taken since t only increases as the DDA visits successive
voxels.)

Finally, a rare and subtle case related to the IEEE floating-point representation must be
handled. Recall from Section 6.8.1 that both “positive” and “negative” zero values can be
represented as floats. Normally there is no need to distinguish between them as the distinc-
tion is mostly not evident—for example, comparing a negative zero to a positive zero gives a
true result. However, the fragment after this one will take advantage of the fact that it is legal
to compute 1 , 0 in floating point, which gives an infinite value. There, we would always like
the positive infinity, and thus negative zeros are cleaned up here.

〈Compute current voxel for axis and handle negative zero direction〉 ≡ 724

voxel[axis] = Clamp(gridIntersect[axis] * grid->res[axis],
0, grid->res[axis] - 1);

deltaT[axis] = 1 / (std::abs(rayGrid.d[axis]) * grid->res[axis]);
if (rayGrid.d[axis] == -0.f)

rayGrid.d[axis] = 0.f;

The parametric t value where the ray exits the current voxel, nextCrossingT[axis], is
found with the ray–slab intersection algorithm from Section 6.1.2, using the plane that
passes through the corresponding voxel face. Given a zero-valued direction component,
nextCrossingT ends up with the positive floating-point ∞ value. The voxel stepping logic
will always decide to step in one of the other directions and will correctly never step in this
direction.

For positive directions, rays exit at the upper end of a voxel’s extent and therefore advance
plus one voxel in each dimension. Traversal completes when the upper limit of the grid is
reached.

〈Handle ray with positive direction for voxel stepping〉 ≡ 724

Float nextVoxelPos = Float(voxel[axis] + 1) / grid->res[axis];
nextCrossingT[axis] = tMin + (nextVoxelPos - gridIntersect[axis]) /

rayGrid.d[axis];
step[axis] = 1;
voxelLimit[axis] = grid->res[axis];

Similar expressions give these values for rays with negative direction components.

〈Handle ray with negative direction for voxel stepping〉 ≡ 724

Float nextVoxelPos = Float(voxel[axis]) / grid->res[axis];
nextCrossingT[axis] = tMin + (nextVoxelPos - gridIntersect[axis]) /

rayGrid.d[axis];
step[axis] = -1;
voxelLimit[axis] = -1;

The Next() method takes care of generating the majorant segment for the current voxel and
taking a step to the next using the DDA. Traversal terminates when the remaining parametric
range [tmin, tmax] is degenerate.



DDAMajorantIterator::grid
723

DDAMajorantIterator::
nextCrossingT
723

DDAMajorantIterator::sigma_t
723

DDAMajorantIterator::tMax
723

DDAMajorantIterator::tMin
723

DDAMajorantIterator::voxel
723

Float 23

MajorantGrid::Lookup() 722

RayMajorantSegment 718

SampledSpectrum 171

726 V O L U M E S C A T T E R I N G CHAPTER 11

〈DDAMajorantIterator Public Methods〉 +≡ 723

pstd::optional<RayMajorantSegment> Next() {
if (tMin >= tMax) return {};
〈Find stepAxis for stepping to next voxel and exit point tVoxelExit 726〉
〈Get maxDensity for current voxel and initialize RayMajorantSegment, seg 726〉
〈Advance to next voxel in maximum density grid 727〉
return seg;

}

The first order of business when Next() executes is to figure out which axis to step along to
visit the next voxel. This gives the t value at which the ray exits the current voxel, tVoxelExit.
Determining this axis requires finding the smallest of three numbers—the parametric t

values where the ray enters the next voxel in each dimension, which is a straightforward task.
However, in this case an optimization is possible because we do not care about the value of
the smallest number, just its corresponding index in the nextCrossingT array. It is possible
to compute this index in straight-line code without any branches, which can be beneficial to
performance.

The following tricky bit of code determines which of the three nextCrossingT values is the
smallest and sets stepAxis accordingly. It encodes this logic by setting each of the three low-
order bits in an integer to the results of three comparisons between pairs of nextCrossingT
values. It then uses a table (cmpToAxis) to map the resulting integer to the direction with the
smallest value.

〈Find stepAxis for stepping to next voxel and exit point tVoxelExit〉 ≡ 726

int bits = ((nextCrossingT[0] < nextCrossingT[1]) << 2) +
((nextCrossingT[0] < nextCrossingT[2]) << 1) +
((nextCrossingT[1] < nextCrossingT[2]));

const int cmpToAxis[8] = {2, 1, 2, 1, 2, 2, 0, 0};
int stepAxis = cmpToAxis[bits];
Float tVoxelExit = std::min(tMax, nextCrossingT[stepAxis]);

Computing the majorant for the current voxel is a matter of multiplying sigma_t with the
maximum density value over the voxel’s volume.

〈Get maxDensity for current voxel and initialize RayMajorantSegment, seg〉 ≡ 726

SampledSpectrum sigma_maj = sigma_t *
grid->Lookup(voxel[0], voxel[1], voxel[2]);

RayMajorantSegment seg{tMin, tVoxelExit, sigma_maj};

With the majorant segment initialized, the method finishes by updating the DDAMajorant
Iterator’s state to reflect stepping to the next voxel in the ray’s path. That is easy to do given
that the 〈Find stepAxis for stepping to next voxel and exit point tVoxelExit〉 fragment has
already set stepAxis to the dimension with the smallest t step that advances to the next voxel.
First, tMin is tentatively set to correspond to the current voxel’s exit point, though if stepping
causes the ray to exit the grid, it is advanced to tMax. This way, the if test at the start of the
Next() method will return immediately the next time it is called.

Otherwise, the DDA steps to the next voxel coordinates and increments the chosen direc-
tion’s nextCrossingT by its deltaT value so that future traversal steps will know how far it is
necessary to go before stepping in this direction again.



DDAMajorantIterator::deltaT
723

DDAMajorantIterator::
nextCrossingT
723

DDAMajorantIterator::step
723

DDAMajorantIterator::tMin
723

DDAMajorantIterator::voxel
723

DDAMajorantIterator::
voxelLimit
723

SECTION 11.4 M E D I A 727

〈Advance to next voxel in maximum density grid〉 ≡ 726

tMin = tVoxelExit;
if (nextCrossingT[stepAxis] > tMax) tMin = tMax;
voxel[stepAxis] += step[stepAxis];
if (voxel[stepAxis] == voxelLimit[stepAxis]) tMin = tMax;
nextCrossingT[stepAxis] += deltaT[stepAxis];

Although the grid can significantly improve the efficiency of volume sampling by providing
majorants that are a better fit to the local medium density and thence reducing the number
of null-scattering events, it also introduces the overhead of additional computations for
stepping through voxels with the DDA. Too low a grid resolution and the majorants may
not fit the volume well; too high a resolution and too much time will be spent walking
through the grid. Figure 11.19 has a graph that illustrates these trade-offs, plotting voxel
grid resolution versus execution time when rendering the cloud model used in Figures 11.2
and 11.8. We can see that the performance characteristics are similar on both the CPU and
the GPU, with both exhibiting good performance with grid resolutions that span roughly 64
through 256 voxels on a side. Figure 11.20 shows the extinction coefficient and the majorant

1

1.00

0.75

0.50

0.25

8 64
Grid resolution

Re
lat

iv
e e

xe
cu

tio
n 

tim
e

256 1024

CPU
GPU

Figure 11.19: Rendering Performance versus Maximum Density Grid Resolution. Performance is
measured when rendering the cloud model in Figure 11.8 on both the CPU and the GPU; results are
normalized to the performance on the corresponding processor with a single-voxel grid. Low-resolution
grids give poor performance from many null-scattering events due to loose majorants, while high-resolution
grids harm performance from grid traversal overhead.

100 120 140 160

2.0

1.5

1.0

0.5

σt
σmaj

Figure 11.20: Extinction Coefficient and Majorant along a Ray. These quantities are plotted for a
randomly selected ray that was traced when rendering the image in Figure 11.8. The majorant grid resolution
was 256 voxels on a side, which leads to a good fit to the actual extinction coefficient along the ray.



Bounds3f 97

DenselySampledSpectrum 167

Float 23

GridMedium 728

HGPhaseFunction 713

SampledGrid 1076

SampledSpectrum 171

Transform 120

728 V O L U M E S C A T T E R I N G CHAPTER 11

along a randomly selected ray that was traced when rendering the cloud scene; we can see
that the majorants end up fitting the extinction coefficient well.

11.4.4 UNIFORM GRID MEDIUM

The GridMedium stores medium densities and (optionally) emission at a regular 3D grid of
positions, similar to the way that the image textures represent images with a 2D grid of
samples.

〈GridMedium Definition〉 ≡
class GridMedium {

public:
〈GridMedium Public Type Definitions 730〉
〈GridMedium Public Methods 729〉

private:
〈GridMedium Private Members 728〉

};

The constructor takes a 3D array that stores the medium’s density and values that define
emission as well as the medium space bounds of the grid and a transformation matrix
that goes from medium space to rendering space. Most of its work is direct initialization
of member variables, which we have elided here. Its one interesting bit is in the fragment
〈Initialize majorantGrid for GridMedium〉, which we will see in a few pages.

〈GridMedium Private Members〉 ≡ 728

Bounds3f bounds;
Transform renderFromMedium;

Two steps give the σa and σs values for the medium at a point: first, baseline spectral values of
these coefficients, sigma_a_spec and sigma_s_spec, are sampled at the specified wavelengths
to give SampledSpectrum values for them. These are then scaled by the interpolated density
from densityGrid. The phase function in this medium is uniform and parameterized only
by the Henyey–Greenstein g parameter.

〈GridMedium Private Members〉 +≡ 728

DenselySampledSpectrum sigma_a_spec, sigma_s_spec;
SampledGrid<Float> densityGrid;
HGPhaseFunction phase;

The GridMedium allows volumetric emission to be specified in one of two ways. First, a grid
of temperature values may be provided; these are interpreted as blackbody emission tem-
peratures specified in degrees Kelvin (Section 4.4.1). Alternatively, a single general spectral
distribution may be provided. Both are then scaled by values from the LeScale grid. Even
though spatially varying general spectral distributions are not supported, these represen-
tations make it possible to specify a variety of emissive effects; Figure 11.5 uses blackbody
emission and Figure 11.21 uses a scaled spectrum. An exercise at the end of the chapter out-
lines how this representation might be generalized.

〈GridMedium Private Members〉 +≡ 728

pstd::optional<SampledGrid<Float>> temperatureGrid;
DenselySampledSpectrum Le_spec;
SampledGrid<Float> LeScale;



DenselySampledSpectrum::
Sample()
167

GridMedium::isEmissive 729

GridMedium::phase 728

GridMedium::sigma_a_spec 728

GridMedium::sigma_s_spec 728

MediumProperties 718

Point3f 92

SampledSpectrum 171

SampledWavelengths 173

SECTION 11.4 M E D I A 729

Figure 11.21: Volumetric Emission Specified with a Spectrum. The emission inside the globe is
specified using a fixed spectrum that represents a purple color that is then scaled by a spatially varying
factor. (Scene courtesy of Jim Price.)

A Boolean, isEmissive, indicates whether any emission has been specified. It is initialized in
the GridMedium constructor, which makes the implementation of the IsEmissive() interface
method easy.

〈GridMedium Public Methods〉 ≡ 728

bool IsEmissive() const { return isEmissive; }

〈GridMedium Private Members〉 +≡ 728

bool isEmissive;

The medium’s properties at a given point are found by interpolating values from the appro-
priate grids.

〈GridMedium Public Methods〉 +≡ 728

MediumProperties SamplePoint(Point3f p,
const SampledWavelengths &lambda) const {

〈Sample spectra for grid medium σa and σs 729〉
〈Scale scattering coefficients by medium density at p 730〉
〈Compute grid emission Le at p 730〉
return MediumProperties{sigma_a, sigma_s, &phase, Le};

}

Initial values of σa and σs are found by sampling the baseline values.

〈Sample spectra for grid medium σa and σs〉 ≡ 729, 731

SampledSpectrum sigma_a = sigma_a_spec.Sample(lambda);
SampledSpectrum sigma_s = sigma_s_spec.Sample(lambda);

Next, σa and σs are scaled by the interpolated density at p. The provided point must be
transformed from rendering space to the medium’s space and then remapped to [0, 1]3 before
the grid’s Lookup() method is called to interpolate the density.



BlackbodySpectrum 169

Bounds3::Offset() 102

Bounds3f 97

DDAMajorantIterator 723

DenselySampledSpectrum::
Sample()
167

Float 23

GridMedium 728

GridMedium::bounds 728

GridMedium::densityGrid 728

GridMedium::isEmissive 729

GridMedium::LeScale 728

GridMedium::Le_spec 728

GridMedium::majorantGrid 730

GridMedium::renderFromMedium
728

GridMedium::temperatureGrid
728

MajorantGrid 722

MajorantGrid::res 722

MajorantGrid::Set() 722

MajorantGrid::VoxelBounds()
722

Point3f 92

SampledGrid 1076

SampledGrid::Lookup() 1077

SampledGrid::MaxValue() 1077

SampledSpectrum 171

Transform::ApplyInverse()
130

730 V O L U M E S C A T T E R I N G CHAPTER 11

〈Scale scattering coefficients by medium density at p〉 ≡ 729

p = renderFromMedium.ApplyInverse(p);
p = Point3f(bounds.Offset(p));
Float d = densityGrid.Lookup(p);
sigma_a *= d;
sigma_s *= d;

If emission is present, the emitted radiance at the point is computed using whichever of the
methods was used to specify it. The implementation here goes through some care to avoid
calls to Lookup() when they are unnecessary, in order to improve performance.

〈Compute grid emission Le at p〉 ≡ 729

SampledSpectrum Le(0.f);
if (isEmissive) {

Float scale = LeScale.Lookup(p);
if (scale > 0) {

〈Compute emitted radiance using temperatureGrid or Le_spec 730〉
}

}

Given a nonzero scale, whichever method is being used to specify emission is queried to get
the SampledSpectrum.

〈Compute emitted radiance using temperatureGrid or Le_spec〉 ≡ 730

if (temperatureGrid) {
Float temp = temperatureGrid->Lookup(p);
Le = scale * BlackbodySpectrum(temp).Sample(lambda);

} else
Le = scale * Le_spec.Sample(lambda);

As mentioned earlier, GridMedium uses DDAMajorantIterator to provide its majorants rather
than using a single grid-wide majorant.

〈GridMedium Public Type Definitions〉 ≡ 728

using MajorantIterator = DDAMajorantIterator;

The GridMedium constructor concludes with the following fragment, which initializes a
MajorantGrid with its majorants. Doing so is just a matter of iterating over all the majorant
cells, computing their bounds, and finding the maximum density over them. The maximum
density is easily found with a convenient SampledGrid method.

〈Initialize majorantGrid for GridMedium〉 ≡
for (int z = 0; z < majorantGrid.res.z; ++z)

for (int y = 0; y < majorantGrid.res.y; ++y)
for (int x = 0; x < majorantGrid.res.x; ++x) {

Bounds3f bounds = majorantGrid.VoxelBounds(x, y, z);
majorantGrid.Set(x, y, z, densityGrid.MaxValue(bounds));

}

〈GridMedium Private Members〉 +≡ 728

MajorantGrid majorantGrid;

The implementation of the SampleRay() Medium interface method is now easy. We can find
the overlap of the ray with the medium using a straightforward fragment, not included here,
and compute the baseline σt value. With that, we have enough information to initialize the
DDAMajorantIterator.



Bounds3f 97

DDAMajorantIterator 723

Float 23

GridMedium 728

GridMedium::majorantGrid 730

Ray 95

RGBGridMedium 731

SampledSpectrum 171

SampledWavelengths 173

Transform 120

SECTION 11.4 M E D I A 731

〈GridMedium Public Methods〉 +≡ 728

DDAMajorantIterator SampleRay(Ray ray, Float raytMax,
const SampledWavelengths &lambda) const {

〈Transform ray to medium’s space and compute bounds overlap〉
〈Sample spectra for grid medium σa and σs 729〉
SampledSpectrum sigma_t = sigma_a + sigma_s;
return DDAMajorantIterator(ray, tMin, tMax, &majorantGrid, sigma_t);

}

11.4.5 RGB GRID MEDIUM

The last Medium implementation that we will describe is the RGBGridMedium. It is a variant
of GridMedium that allows specifying the absorption and scattering coefficients as well as
volumetric emission via RGB colors. This makes it possible to render a variety of colorful
volumetric effects; an example is shown in Figure 11.22.

〈RGBGridMedium Definition〉 ≡
class RGBGridMedium {

public:
〈RGBGridMedium Public Type Definitions 733〉
〈RGBGridMedium Public Methods 732〉

private:
〈RGBGridMedium Private Members 731〉

};

Its constructor, not included here, is similar to that of GridMedium in that most of what it does
is to directly initialize member variables with values passed to it. As with GridMedium, the
medium’s extent is jointly specified by a medium space bounding box and a transformation
from medium space to rendering space.

〈RGBGridMedium Private Members〉 ≡ 731

Bounds3f bounds;
Transform renderFromMedium;

Figure 11.22: Volumetric Scattering Properties Specified Using RGB Coefficients. The RGBGridMedium
class makes it possible to specify colorful participating media like the example shown here. (Scene courtesy
of Jim Price.)



Bounds3::Offset() 102

Float 23

HGPhaseFunction 713

MediumProperties 718

Point3f 92

RGBGridMedium 731

RGBGridMedium::LeGrid 732

RGBGridMedium::LeScale 732

RGBGridMedium::
renderFromMedium
731

RGBGridMedium::sigmaScale
732

RGBIlluminantSpectrum 199

RGBUnboundedSpectrum 198

RGBUnboundedSpectrum::
Sample()
199

SampledGrid 1076

SampledGrid::Lookup() 1077

SampledSpectrum 171

SampledWavelengths 173

Transform::ApplyInverse()
130

732 V O L U M E S C A T T E R I N G CHAPTER 11

Emission is specified by the combination of an optional SampledGrid of RGBIlluminant
Spectrum values and a scale factor. The RGBGridMedium reports itself as emissive if the grid
is present and the scale is nonzero. This misses the case of a fully zero LeGrid, though we
assume that case to be unusual.

〈RGBGridMedium Public Methods〉 ≡ 731

bool IsEmissive() const { return LeGrid && LeScale > 0; }

〈RGBGridMedium Private Members〉 +≡ 731

pstd::optional<SampledGrid<RGBIlluminantSpectrum>> LeGrid;
Float LeScale;

Sampling the medium at a point is mostly a matter of converting the various RGB values to
SampledSpectrum values and trilinearly interpolating them to find their values at the lookup
point p.

〈RGBGridMedium Public Methods〉 +≡ 731

MediumProperties SamplePoint(Point3f p,
const SampledWavelengths &lambda) const {

p = renderFromMedium.ApplyInverse(p);
p = Point3f(bounds.Offset(p));
〈Compute σa and σs for RGBGridMedium 732〉
〈Find emitted radiance Le for RGBGridMedium 733〉
return MediumProperties{sigma_a, sigma_s, &phase, Le};

}

As with earlier Medium implementations, the phase function is uniform throughout this
medium.

〈RGBGridMedium Private Members〉 +≡ 731

HGPhaseFunction phase;

The absorption and scattering coefficients are stored using the RGBUnboundedSpectrum class.
However, this class does not support the arithmetic operations that are necessary to perform
trilinear interpolation in the SampledGrid::Lookup() method. For such cases, SampledGrid al-
lows passing a callback function that converts the in-memory values to another type that does
support them. Here, the implementation provides one that converts to SampledSpectrum,
which does allow arithmetic and matches the type to be returned in MediumProperties as
well.

〈Compute σa and σs for RGBGridMedium〉 ≡ 732

auto convert = [=] (RGBUnboundedSpectrum s) { return s.Sample(lambda); };
SampledSpectrum sigma_a = sigmaScale *

(sigma_aGrid ? sigma_aGrid->Lookup(p, convert) : SampledSpectrum(1.f));
SampledSpectrum sigma_s = sigmaScale *

(sigma_sGrid ? sigma_sGrid->Lookup(p, convert) : SampledSpectrum(1.f));

Because sigmaScale is applied to both σa and σs, it provides a convenient way to fine-tune
the density of a medium without needing to update all of its individual RGB values.

〈RGBGridMedium Private Members〉 +≡ 731

pstd::optional<SampledGrid<RGBUnboundedSpectrum>> sigma_aGrid, sigma_sGrid;
Float sigmaScale;



Bounds3f 97

DDAMajorantIterator 723

MajorantGrid 722

MajorantGrid::res 722

MajorantGrid::VoxelBounds()
722

RGB 182

RGBGridMedium 731

RGBGridMedium::LeGrid 732

RGBGridMedium::LeScale 732

RGBGridMedium::majorantGrid
734

RGBIlluminantSpectrum 199

RGBIlluminantSpectrum::
Sample()
200

RGBUnboundedSpectrum 198

SampledGrid 1076

SampledGrid::Lookup() 1077

SampledSpectrum 171

SECTION 11.4 M E D I A 733

Volumetric emission is handled similarly, with a lambda function that converts the RGB
IlluminantSpectrum values to SampledSpectrums for trilinear interpolation in the Lookup()
method.

〈Find emitted radiance Le for RGBGridMedium〉 ≡ 732

SampledSpectrum Le(0.f);
if (LeGrid && LeScale > 0) {

auto convert =
[=] (RGBIlluminantSpectrum s) { return s.Sample(lambda); };

Le = LeScale * LeGrid->Lookup(p, convert);
}

The DDAMajorantIterator provides majorants for the RGBGridMedium as well.

〈RGBGridMedium Public Type Definitions〉 ≡ 731

using MajorantIterator = DDAMajorantIterator;

The MajorantGrid that is used by the DDAMajorantIterator is initialized by the following
fragment, which runs at the end of the RGBGridMedium constructor.

〈Initialize majorantGrid for RGBGridMedium〉 ≡
for (int z = 0; z < majorantGrid.res.z; ++z)

for (int y = 0; y < majorantGrid.res.y; ++y)
for (int x = 0; x < majorantGrid.res.x; ++x) {

Bounds3f bounds = majorantGrid.VoxelBounds(x, y, z);
〈Initialize majorantGrid voxel for RGB σa and σs 734〉

}

Before explaining how the majorant grid voxels are initialized, we will discuss why RGB
UnboundedSpectrum values are stored in rgbDensityGrid rather than the more obvious choice
of RGB values. The most important reason is that the RGB to spectrum conversion approach
from Section 4.6.6 does not guarantee that the spectral distribution’s value will always be
less than or equal to the maximum of the original RGB components. Thus, storing RGB
and setting majorants using bounds on RGB values would not give bounds on the eventual
SampledSpectrum values that are computed.

One might nevertheless try to store RGB, convert those RGB values to spectra when initializ-
ing the majorant grid, and then bound those spectra to find majorants. That approach would
also be unsuccessful, since when two RGB values are linearly interpolated, the corresponding
RGBUnboundedSpectrum does not vary linearly between the RGBUnboundedSpectrum distribu-
tions of the two original RGB values.

Thus, RGBGridMedium stores RGBUnboundedSpectrum values at the grid sample points and
linearly interpolates their SampledSpectrum values at lookup points. With that approach, we
can guarantee that bounds on RGBUnboundedSpectrum values in a region of space (and then a
bit more, given trilinear interpolation) give bounds on the sampled spectral values that are
returned by SampledGrid::Lookup() in the SamplePoint() method, fulfilling the requirement
for the majorant grid.

To compute the majorants, we use a SampledGrid method that returns its maximum value
over a region of space and takes a lambda function that converts its underlying type to
another—here, Float for the MajorantGrid.

One nit in how the majorants are computed is that the following code effectively assumes that
the values in the σa and σs grids are independent. Although it computes a valid majorant, it is



DDAMajorantIterator 723

Float 23

MajorantGrid 722

MajorantGrid::Set() 722

Ray 95

RGBGridMedium::majorantGrid
734

RGBGridMedium::sigmaScale
732

RGBGridMedium::sigma_aGrid
732

RGBGridMedium::sigma_sGrid
732

RGBUnboundedSpectrum 198

SampledGrid::MaxValue() 1077

SampledSpectrum 171

SampledWavelengths 173

734 V O L U M E S C A T T E R I N G CHAPTER 11

unable to account for cases like the two being defined such that σs = c − σa for some constant
c. Then, the bound will be looser than it could be.

〈Initialize majorantGrid voxel for RGB σa and σs〉 ≡ 733

auto max = [] (RGBUnboundedSpectrum s) { return s.MaxValue(); };
Float maxSigma_t = (sigma_aGrid ? sigma_aGrid->MaxValue(bounds, max) : 1) +

(sigma_sGrid ? sigma_sGrid->MaxValue(bounds, max) : 1);
majorantGrid.Set(x, y, z, sigmaScale * maxSigma_t);

〈RGBGridMedium Private Members〉 +≡ 731

MajorantGrid majorantGrid;

With the majorant grid initialized, the SampleRay() method’s implementation is trivial. (See
Exercise 11.3 for a way in which it might be improved, however.)

〈RGBGridMedium Public Methods〉 +≡ 731

DDAMajorantIterator SampleRay(Ray ray, Float raytMax,
const SampledWavelengths &lambda) const {

〈Transform ray to medium’s space and compute bounds overlap〉
SampledSpectrum sigma_t(1);
return DDAMajorantIterator(ray, tMin, tMax, &majorantGrid, sigma_t);

}

FURTHER READING

The books written by van de Hulst (1980) and Preisendorfer (1965, 1976) are excellent intro-
ductions to volume light transport. The seminal book by Chandrasekhar (1960) is another
excellent resource, although it is mathematically challenging. d’Eon’s book (2016) has rigor-
ous coverage of this topic and includes extensive references to work in the area. Novák et al.’s
report (2018) provides a comprehensive overview of research in volumetric light transport
for rendering through 2018; see also the “Further Reading” section of Chapter 14 for more
references on this topic.

The Henyey–Greenstein phase function was originally described by Henyey and Greenstein
(1941). Detailed discussion of scattering and phase functions, along with derivations of phase
functions that describe scattering from independent spheres, cylinders, and other simple
shapes, can be found in van de Hulst’s book (1981). Extensive discussion of the Mie and
Rayleigh scattering models is also available there. Hansen and Travis’s survey article is also
a good introduction to the variety of commonly used phase functions (Hansen and Travis
1974); see also d’Eon’s book (2016) for a catalog of useful phase functions and associated
sampling techniques.

While the Henyey–Greenstein model often works well, there are many media that it cannot
represent accurately. Gkioulekas et al. (2013a) showed that sums of Henyey–Greenstein and
von Mises-Fisher lobes are more accurate for representing scattering in many materials than
Henyey–Greenstein alone and derived a 2D parameter space that allows for intuitive control
of translucent appearance.

The paper by Raab et al. (2006) introduced many important sampling building-blocks for
rendering participating media to graphics, including the delta-tracking algorithm for inho-
mogeneous media. Delta tracking has been independently invented in a number of fields; see
both Kutz et al. (2017) and Kettunen et al. (2021) for further details of this history.

The ratio tracking algorithm was introduced to graphics by Novák et al. (2014), though see
the discussion in Novák et al. (2018) for the relationship of this approach to previously de-



DDAMajorantIterator 723

GridMedium 728

NanoVDBMedium 714

RGBGridMedium 731

F U R T H E R R E A D I N G 735

veloped estimators in neutron transport. Novák et al. (2014) also introduced residual ratio
tracking , which makes use of lower bounds on a medium’s density to analytically integrate
part of the beam transmittance. Kutz et al. (2017) extended this approach to distance sam-
pling and introduced the integral formulation of transmittance due to Galtier et al. (2013).
Our derivation of the integral transmittance equations (11.10) and (11.13) follows Georgiev
et al. (2019), as does our discussion of connections between those equations and various
transmittance estimators. Georgiev at al. also developed a number of additional estimators
for transmittance that can give significantly lower error than the ratio tracking estimator that
pbrt uses.

Kettunen et al. (2021) recently developed a significantly improved transmittance estimator
with much lower error than previous approaches. Remarkably, their estimator is effectively a
combination of uniform ray marching with a correction term that removes bias.

For media with substantial variation in density, delta tracking can be inefficient—many small
steps must be taken to get through the optically thin sections. Danskin and Hanrahan (1992)
presented a technique for efficient volume ray marching using a hierarchical data structure.
Another way of addressing this issue was presented by Szirmay-Kalos et al. (2011), who used
a grid to partition scattering volumes in cells and applied delta tracking using the majorant
of each cell as the ray passed through them. This is effectively the approach implemented in
pbrt’s DDAMajorantIterator. The grid cell traversal algorithm implemented there is due to
Cleary and Wyvill (1988) and draws from Bresenham’s line drawing algorithm (Bresenham
1965). Media stored in grids are sometimes tabulated in the camera’s projective space, making
it possible to have more detail close to the camera and less detail farther away. Gamito has
recently developed an algorithm for DDA traversal in this case (Gamito 2021).

Yue et al. (2010) used a kd-tree to store majorants, which was better able to adapt to spatially
varying densities than a grid. In follow-on work, they derived an approach to estimate
the efficiency of spatial partitionings and used it to construct them more effectively (Yue
et al. 2011).

Because scattering may be sampled rarely in optically thin media, many samples may be
necessary to achieve low error. To address this issue, Villemin et al. proposed increasing the
sampling density in such media (Villemin et al. 2018).

Kulla and Fajardo (2012) noted that techniques based on sampling according to transmit-
tance ignore another important factor: spatial variation in the scattering coefficient. They
developed a method based on computing a tabularized 1D sampling distribution for each
ray passing through participating media based on the product of beam transmittance and
scattering coefficient at a number of points along it. They then drew samples from this dis-
tribution, showing good results.

A uniform grid of sample values as is implemented in GridMedium and RGBGridMedium may
consume an excessive amount of memory, especially for media that have not only large empty
regions of space but also fine detail in some regions. This issue is addressed by Museth’s VDB
format (2013) as well as the Field3D system that was described by Wrenninge (2015), both of
which use adaptive hierarchical grids to reduce storage requirements. pbrt’s NanoVDBMedium
is based on NanoVDB (Museth 2021), which is a lighterweight version of VDB.

Just as procedural modeling of textures is an effective technique for shading surfaces, pro-
cedural modeling of volume densities can be used to describe realistic-looking volumetric
objects like clouds and smoke. Perlin and Hoffert (1989) described early work in this area,
and the book by Ebert et al. (2003) has a number of sections devoted to this topic, including
further references. More recently, accurate physical simulation of the dynamics of smoke and
fire has led to extremely realistic volume data sets, including the ones used in this chapter; for



GridMedium 728

RGBGridMedium 731

736 V O L U M E S C A T T E R I N G CHAPTER 11

early work in this area, see for example Fedkiw, Stam, and Jensen (2001). The book by Wren-
ninge (2012) has further information about modeling participating media, with particular
focus on techniques used in modern feature film production.

For media that are generated through simulations, it may be desirable to account for the
variation in the medium over time in order to include the effect of motion blur. Clinton and
Elendt (2009) described an approach to do so based on deforming the vertices of the grid that
stores the medium, and Kulla and Fajardo (2012) applied Eulerian motion blur, where each
grid cell also stores a velocity vector that is used to shift the lookup point based on its time.
Wrenninge described a more efficient approach that instead stores the scattering properties
in each cell as a compact time-varying function (Wrenninge 2016).

In this chapter, we have ignored all issues related to sampling and antialiasing of volume
density functions that are represented by samples in a 3D grid, although these issues should
be considered, especially in the case of a volume that occupies just a few pixels on the screen.
Furthermore, we have used a simple triangle filter to reconstruct densities at intermediate
positions, which is suboptimal for the same reasons that the triangle filter is not a high-
quality image reconstruction filter. Marschner and Lobb (1994) presented the theory and
practice of sampling and reconstruction for 3D data sets, applying ideas similar to those in
Chapter 8. See also the paper by Theußl, Hauser, and Gröller (2000) for a comparison of
a variety of windowing functions for volume reconstruction with the sinc function and a
discussion of how to derive optimal parameters for volume reconstruction filter functions.

Hofmann et al. (2021) noted that sample reconstruction may have a significant performance
cost, even with trilinear filtering. They suggested stochastic sample filtering , where a single
volume sample is chosen with probability given by its filter weight, and showed performance
benefits. However, this approach does introduce bias if a nonlinear function is applied to the
sample value (as is the case when estimating transmittance, for example).

Acquiring volumetric scattering properties of real-world objects is particularly difficult, re-
quiring a solution to the inverse problem of determining the values that lead to the measured
result. See Jensen et al. (2001b), Goesele et al. (2004), Narasimhan et al. (2006), and Peers
et al. (2006) for work on acquiring scattering properties for subsurface scattering. More re-
cently, Gkioulekas et al. (2013b) produced accurate measurements of a variety of media.
Hawkins et al. (2005) have developed techniques to measure properties of media like smoke,
acquiring measurements in real time. Another interesting approach to this problem was in-
troduced by Frisvad et al. (2007), who developed methods to compute these properties from
a lower-level characterization of the scattering properties of the medium. A comprehensive
survey of work in this area was presented by Frisvad et al. (2020). (See also the discussion of
inverse rendering techniques in Section 16.3.1 for additional approaches to these problems.)

Acquiring the volumetric density variation of participating media is also challenging. See
work by Fuchs et al. (2007), Atcheson et al. (2008), and Gu et al. (2013a) for a variety of
approaches to this problem, generally based on illuminating the medium in particular ways
while photographing it from one or more viewpoints.

EXERCISES

11.1 The GridMedium and RGBGridMedium classes use a relatively large amount of mem-
ory for complex volume densities. Determine their memory requirements when
used with complex medium densities and modify their implementations to reduce
memory use. One approach might be to detect regions of space with constant (or
relatively constant) density values using an octree data structure and to only re-



GridMedium 728

MajorantGrid 722

RGBGridMedium 731

RGBGridMedium::SampleRay()
734

RGBUnboundedSpectrum 198

Spectrum 165

E X E R C I S E S 737

fine the octree in regions where the densities are changing. Another possibility is
to use less memory to record each density value—for example, by computing the
minimum and maximum densities and then using 8 or 16 bits per density value
to interpolate between them. What sorts of errors appear when either of these ap-
proaches is pushed too far?

11.2 Improve GridMedium to allow specifying grids of arbitrary Spectrum values to define
emission. How much more memory does your approach use for blackbody emis-
sion distributions than the current implementation, which only stores floating-
point temperatures in that case? How much memory does it use when other spectral
representations are provided? Can you find ways of reducing memory use—for ex-
ample, by detecting equal spectra and only storing them in memory once?

11.3 One shortcoming of the majorants computed by the RGBGridMedium is that they do
not account for spectral variation in the scattering coefficients—although conser-
vative, they may give a loose bound for wavelengths where the coefficients are much
lower than the maximum values. Computing tighter majorants is not straight-
forward in a spectral renderer: in a renderer that used RGB color for rendering,
it is easy to maintain a majorant grid of RGB values instead of Floats, though
doing so is more difficult with a spectral renderer, for reasons related to why
RGBUnboundedSpectrum values are stored in the grids for σa and σs and not RGB.
(See the discussion of this topic before the 〈Initialize majorantGrid voxel for RGB σa
and σs〉 fragment.)

Investigate this issue and develop an approach that better accounts for spectral vari-
ation in the scattering coefficients to return wavelength-varying majorants when
RGBGridMedium::SampleRay() is called. You might, for example, find a way to com-
pute RGBUnboundedSpectrum values that bound the maximum of two or more others.
How much overhead does your representation introduce? How much is rendering
time improved for scenes with colored media due to more efficient sampling when
it is used?

11.4 The Medium implementations that use the MajorantGrid all currently use fixed grid
resolutions for it, regardless of the amount of variation in density in their under-
lying media. Read the paper by Yue et al. (2011) and use their approach to choose
those resolutions adaptively. Then, measure performance over a sweep of grid sizes
with a variety of volume densities. Are there any cases where there is a significant
performance benefit from a different grid resolution? Considering their assump-
tions and pbrt’s implementation, can you explain any discrepancies between grid
sizes set with their heuristics versus the most efficient resolution in pbrt?

11.5 Read Wrenninge’s paper (2016) on a time-varying density representation for mo-
tion blur in volumes and implement this approach in pbrt. One challenge will be
to generate volumes in this representation; you may need to implement a physical
simulation system in order to make some yourself.


